本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1301 | 2025-03-27 |
Deep learning-based prediction of Monte Carlo dose distribution for heavy ion therapy
2025-Apr, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100735
PMID:40129728
|
研究论文 | 提出了一种基于深度学习的模型,用于快速预测重离子治疗中的蒙特卡洛模拟剂量分布 | 开发了Cascade Hierarchically Densely 3D U-Net (CHD U-Net)模型,能够在几秒钟内预测蒙特卡洛剂量分布,且准确率高于现有方法 | 样本量相对较小,仅包含67例头颈患者和30例胸腹患者 | 提高重离子治疗中剂量分布的预测准确性和计算效率 | 头颈和胸腹部位的重离子治疗患者 | 医学影像分析 | 癌症 | 深度学习 | CHD U-Net | CT图像和TPSDose数据 | 67例头颈患者和30例胸腹患者 |
1302 | 2025-03-27 |
External validation of an algorithm to detect vertebral level mislabeling and autocontouring errors
2025-Apr, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100738
PMID:40129727
|
research paper | 该研究对外部验证了一种椎体自动轮廓工具的算法,并研究了一种后处理方法以提高其性能至临床可接受水平 | 开发了一种后处理技术,显著提高了椎体定位的准确性 | 在外部数据集上的性能相比原始训练数据集有所下降 | 验证和改进椎体自动轮廓工具的临床适用性 | CT扫描中的椎体 | digital pathology | NA | machine learning, deep learning | NA | CT scans | 81例CT扫描(40例来自机构A,41例来自机构B) |
1303 | 2025-03-27 |
ADAM: automated digital phenotyping and morphological texture analysis of bone biopsy images using deep learning
2025-Apr, JBMR plus
IF:3.4Q2
DOI:10.1093/jbmrpl/ziaf028
PMID:40129969
|
研究论文 | 开发了一种名为ADAM的自动化流程,用于通过深度学习对骨活检图像进行数字表型分析和形态纹理分析 | ADAM流程能够快速生成组织与细胞图谱,并在无需额外染色的情况下,通过亮场显微镜图像进行骨细胞计数 | 对于形态异质性较高的骨细胞计数,如破骨细胞和成骨细胞,其相关系数相对较低 | 提高骨活检图像分析的自动化程度和准确性,以改善病理工作流程和诊断洞察 | 未脱钙骨活检图像中的组织与细胞成分 | 数字病理学 | 骨病 | 深度学习 | NA | 图像 | 最多20张图像 |
1304 | 2025-03-26 |
Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 提出了一种弱监督多模态对比学习框架(WSMCL),用于预测乳腺癌中的HER2评分 | 首次将多模态(H&E和IHC)联合学习与弱监督对比学习相结合,通过多模态注意力对比学习模块(MACL)实现不同模态特征的语义对齐 | 未提及具体样本量或数据集的多样性限制 | 提高乳腺癌HER2评分的预测准确性 | 乳腺癌全切片图像(WSI)中的HER2评分 | 数字病理学 | 乳腺癌 | 多模态对比学习、多头自注意力(MHSA) | WSMCL(弱监督多模态对比学习框架) | 全切片图像(WSI) | NA |
1305 | 2025-03-26 |
Artificial intelligence-driven forecasting and shift optimization for pediatric emergency department crowding
2025-Apr, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooae138
PMID:40124532
|
研究论文 | 本研究开发并评估了一个基于人工智能(AI)的系统,用于预测儿科急诊科(PED)的拥挤情况,并通过机器学习操作(MLOps)优化医生班次安排 | 结合先进的深度学习模型与MLOps架构,实现持续模型更新,提升预测准确性,并在COVID-19等事件导致的数据漂移中表现出韧性 | 单中心设计和固定的人员配置模型,需多中心验证和在动态人员配置环境中的实施 | 预测儿科急诊科拥挤情况并优化医生班次安排 | 352,843例儿科急诊科入院数据 | 机器学习 | 儿科急诊 | 机器学习操作(MLOps) | Temporal Convolutional Network, Time-series Dense Encoder, Reversible Instance Normalization, Neural High-order Time Series model, Neural Basis Expansion Analysis | 时间序列数据 | 352,843例儿科急诊科入院数据 |
1306 | 2025-03-25 |
Detection of basal cell carcinoma by machine learning-assisted ex vivo confocal laser scanning microscopy
2025-Apr, International journal of dermatology
IF:3.5Q1
DOI:10.1111/ijd.17519
PMID:39627947
|
研究论文 | 本研究开发了一种基于机器学习的算法,用于在离体共聚焦激光扫描显微镜(EVCM)图像中检测基底细胞癌(BCC) | 首次将卷积神经网络(MobileNet-V1)应用于EVCM图像中的BCC检测,以辅助临床决策 | 样本量较小(50张训练图像和19张测试图像),且为概念验证研究 | 通过机器学习算法提高EVCM图像中基底细胞癌的检测效率,减少专业人员培训时间 | 基底细胞癌(BCC)的离体组织样本 | 数字病理学 | 基底细胞癌 | 离体共聚焦激光扫描显微镜(EVCM) | CNN(MobileNet-V1) | 图像 | 50张训练EVCM图像(来自组织学确认的BCC新鲜组织样本)和19张测试图像(10张含肿瘤,9张无肿瘤) |
1307 | 2025-03-25 |
Collaborative Deep Learning and Information Fusion of Heterogeneous Latent Variable Models for Industrial Quality Prediction
2025-Apr, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3537809
PMID:40036535
|
研究论文 | 本文提出了一种结合深度学习和信息融合的异构潜在变量模型框架,用于工业质量预测 | 通过协作逐层特征提取和异构模型集成,提高了质量预测的准确性和稳定性 | 仅通过两个工业案例验证了方法的有效性,可能需要更多案例进一步验证 | 提高工业质量预测的准确性和稳定性 | 工业质量预测系统 | 机器学习 | NA | 深度学习, 信息融合, 集成学习 | 潜在变量模型 | 工业质量数据 | 两个真实工业案例 |
1308 | 2025-03-25 |
Co-Training Broad Siamese-Like Network for Coupled-View Semi-Supervised Learning
2025-Apr, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3531441
PMID:40036533
|
研究论文 | 提出了一种用于耦合视图半监督分类的协同训练宽Siamese-like网络(Co-BSLN) | 利用基于宽学习系统(BLS)的简单浅层网络简化网络结构并减少训练时间,通过直接伪逆计算替代反向传播迭代 | 未提及具体的数据集规模或特定应用场景的限制 | 改进多视图半监督学习的准确性和训练效率 | 多视图数据 | 机器学习 | NA | 宽学习系统(BLS) | Co-BSLN(协同训练宽Siamese-like网络) | 多视图数据 | 未提及具体样本数量 |
1309 | 2025-03-25 |
Evaluation of a novel ensemble model for preoperative ovarian cancer diagnosis: Clinical factors, O-RADS, and deep learning radiomics
2025-Apr, Translational oncology
IF:4.5Q1
DOI:10.1016/j.tranon.2025.102335
PMID:40048985
|
research paper | 本研究开发了一种结合临床变量、O-RADS和深度学习放射组学的集成模型,用于术前卵巢癌诊断,并评估其对超声医师诊断能力的提升效果 | 首次将临床变量、O-RADS评分和深度学习放射组学特征相结合,构建集成模型,显著提高了卵巢癌的诊断准确性和超声医师的诊断能力 | 研究仅基于两个中心的数据,可能需要更多外部验证以确认模型的泛化能力 | 提高术前卵巢癌诊断的准确性并评估模型对超声医师诊断能力的提升效果 | 卵巢癌患者 | digital pathology | ovarian cancer | deep learning radiomics, LASSO method | ensemble model | transvaginal ultrasound images | 来自两个中心的数据(具体样本量未明确说明) |
1310 | 2025-03-25 |
Gran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservation
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111419
PMID:40124302
|
research paper | 介绍了一个针对Gran Canaria(加那利群岛,西班牙)的新数据集,旨在通过计算机视觉技术自动生成植被地图 | 该数据集在基于航拍图像的语义分割领域中独特,提供了20个明确定义的植被群落的详细注释,超越了现有数据集的广泛分类 | NA | 开发并测试能够自动生成植被地图的深度学习模型,以支持环境监测和保护 | Gran Canaria的植被群落 | computer vision | NA | deep learning, computer vision | NA | aerial imagery | 20个明确定义的植被群落,以及五个非植被类别(如水体、道路或建筑物) |
1311 | 2025-03-23 |
Robust and interpretable deep learning system for prognostic stratification of extranodal natural killer/T-cell lymphoma
2025-Apr, European journal of nuclear medicine and molecular imaging
IF:8.6Q1
DOI:10.1007/s00259-024-07024-x
PMID:39714634
|
研究论文 | 本文开发并验证了DeepENKTCL,一个用于预测外鼻型自然杀伤/T细胞淋巴瘤(ENKTCL)预后风险分层的可解释深度学习系统 | DeepENKTCL结合了肿瘤分割模型、PET/CT融合模型和预后预测模型,通过SHAP分析增强了模型的可解释性,提供了优于现有模型的预后性能和临床效益 | 研究样本来自四个中心,可能存在样本选择偏差,且未提及外部验证结果 | 开发并验证一个可解释的深度学习系统,用于ENKTCL的预后风险分层 | 外鼻型自然杀伤/T细胞淋巴瘤(ENKTCL)患者 | 数字病理学 | 淋巴瘤 | 深度学习、PET/CT融合、放射组学、拓扑特征分析 | 深度学习模型 | 医学影像(PET/CT) | 562名患者,分为训练、验证和测试队列 |
1312 | 2025-03-22 |
Automated Bone Cancer Detection Using Deep Learning on X-Ray Images
2025-Apr, Surgical innovation
IF:1.2Q3
DOI:10.1177/15533506241299886
PMID:39679470
|
研究论文 | 本文提出了一种基于深度学习的自动化骨癌检测方法,使用X射线图像进行骨癌分类 | 提出了一种结合Golden Search优化算法和深度学习的计算机辅助诊断方法(GSODL-CADBCC),用于骨癌分类 | 未提及具体的数据集规模或多样性限制,也未讨论模型在其他类型医学图像上的泛化能力 | 开发一种自动化系统,用于从X射线图像中准确区分健康骨骼和癌变骨骼 | X射线图像中的骨骼 | 计算机视觉 | 骨癌 | 深度学习,Golden Search优化算法,双边滤波 | SqueezeNet,LSTM | X射线图像 | 未明确提及具体样本数量 |
1313 | 2025-03-22 |
A Systematic Review of Advances in AI-Assisted Analysis of Fundus Fluorescein Angiography (FFA) Images: From Detection to Report Generation
2025-Apr, Ophthalmology and therapy
IF:2.6Q2
DOI:10.1007/s40123-025-01109-y
PMID:39982648
|
综述 | 本文系统回顾了人工智能在眼底荧光血管造影(FFA)图像分析中的应用进展,从病变检测到报告生成 | 总结了AI在FFA图像分析中的关键突破,并探讨了其对眼科临床实践的潜在影响 | 需要进一步研究以提高模型透明度,并确保在不同人群中的稳健性能,数据隐私和技术基础设施仍是广泛临床应用的挑战 | 探讨人工智能在FFA图像分析中的应用及其对眼科临床实践的影响 | 眼底荧光血管造影(FFA)图像 | 计算机视觉 | 眼底疾病 | 深度学习,机器学习 | NA | 图像 | 23篇文章 |
1314 | 2025-03-21 |
Trends in Research of Odontogenic Keratocyst and Ameloblastoma
2025-Apr, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345241282256
PMID:39876078
|
review | 本文综述了牙源性角化囊肿(OKC)和成釉细胞瘤(AM)的研究趋势,重点介绍了单细胞和空间组学、三维培养技术以及人工智能在诊断和治疗中的应用 | 利用单细胞和空间组学技术揭示了OKC和AM的肿瘤微环境和细胞异质性,三维培养技术如类器官模型用于分析AM亚型和测试潜在疗法,人工智能提高了基于放射组学和病理组学的诊断准确性 | 尽管AM已有临床前模型,但OKC的可靠体外和体内模型仍然稀缺 | 总结和推动OKC和AM研究领域的最新进展和趋势 | 牙源性角化囊肿(OKC)和成釉细胞瘤(AM) | digital pathology | NA | 单细胞组学、空间组学、三维培养技术、人工智能(机器学习和深度学习) | NA | NA | NA |
1315 | 2025-03-21 |
Deep learning initialized compressed sensing (Deli-CS) in volumetric spatio-temporal subspace reconstruction
2025-Apr, Magma (New York, N.Y.)
DOI:10.1007/s10334-024-01222-2
PMID:39891798
|
研究论文 | 本研究提出了一种名为Deli-CS的深度学习方法,用于加速体积多轴螺旋投影MRF的重建,旨在实现全脑T1和T2映射 | 引入了深度学习初始化的压缩感知(Deli-CS)方法,通过DL生成的种子点启动迭代重建,减少收敛所需的迭代次数 | NA | 减少MRI重建时间,提高全脑多参数映射的效率 | 体积多轴螺旋投影MRF数据 | 医学影像处理 | NA | 深度学习,压缩感知 | 深度学习模型 | MRI图像 | NA |
1316 | 2025-02-05 |
Direct estimation of fetal biometry measurements from ultrasound video scans through deep learning
2025-Apr, American journal of obstetrics & gynecology MFM
IF:3.8Q1
DOI:10.1016/j.ajogmf.2025.101623
PMID:39900243
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1317 | 2025-03-21 |
CommRad RF: A dataset of communication radio signals for detection, identification and classification
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111387
PMID:40103755
|
研究论文 | 本文介绍了一个创新的通信无线电信号数据集CommRad RF,旨在提高通信信道的安全性,并提出了两种深度学习模型用于高效处理和学习复杂无线电信号数据 | 填补了目前没有公开的步话机/商用无线电数据集的空白,并提出了两种新的深度学习模型Light Weight 1DCNN和Light Weight Bivariate 1DCNN | 数据集仅包含室内多径环境下的无线电信号,可能不适用于其他环境 | 提高通信信道的安全性,检测和识别未经授权的传输源 | 无线电信号 | 机器学习 | NA | 深度学习 | Light Weight 1DCNN, Light Weight Bivariate 1DCNN | 无线电信号 | 超过2700个无线电信号,来自27个无线电设备 |
1318 | 2025-03-21 |
A novel rotation and scale-invariant deep learning framework leveraging conical transformers for precise differentiation between meningioma and solitary fibrous tumor
2025-Apr, Journal of pathology informatics
DOI:10.1016/j.jpi.2025.100422
PMID:40104410
|
研究论文 | 本文提出了一种新颖的旋转和尺度不变的深度学习框架,利用锥形变换器从全切片图像中捕捉全局和局部成像标记,以准确区分脑膜瘤和孤立性纤维瘤 | 采用了锥形变换器的新架构,结合加权多数投票方案,提高了诊断的准确性和鲁棒性 | 数据集规模较小,仅包含92名患者,可能影响模型的泛化能力 | 开发一种基于AI的诊断工具,用于精确区分脑膜瘤和孤立性纤维瘤 | 脑膜瘤和孤立性纤维瘤 | 数字病理学 | 脑膜瘤 | 深度学习 | 锥形变换器 | 图像 | 92名患者(46名脑膜瘤患者和46名孤立性纤维瘤患者) |
1319 | 2025-03-20 |
Effect of adaptive statistical iterative reconstruction-V algorithm and deep learning image reconstruction algorithm on image quality and emphysema quantification in COPD patients under ultra-low-dose conditions
2025-Apr-01, The British journal of radiology
DOI:10.1093/bjr/tqae251
PMID:39862404
|
研究论文 | 本研究探讨了在超低剂量扫描条件下,不同重建算法(ASIR-V和DLIR)对慢性阻塞性肺疾病(COPD)患者图像质量和肺气肿定量的影响 | 首次在超低剂量CT扫描条件下比较了ASIR-V和DLIR算法对COPD患者图像质量和肺气肿定量的影响,并发现DLIR-M在图像质量和肺气肿定量方面表现最佳 | 样本量相对较小(62名COPD患者),且仅使用了商业计算机辅助诊断(CAD)软件进行分析 | 探讨不同重建算法在超低剂量CT扫描条件下对COPD患者图像质量和肺气肿定量的影响 | 62名COPD患者 | 数字病理 | 慢性阻塞性肺疾病(COPD) | CT扫描、计算机辅助诊断(CAD) | ASIR-V、DLIR | CT图像 | 62名COPD患者 |
1320 | 2025-03-20 |
Rational design and synthesis of pyrazole derivatives as potential SARS-CoV-2 Mpro inhibitors: An integrated approach merging combinatorial chemistry, molecular docking, and deep learning
2025-Apr-01, Bioorganic & medicinal chemistry
IF:3.3Q1
DOI:10.1016/j.bmc.2025.118095
PMID:39929031
|
研究论文 | 本研究结合组合化学、分子对接和深度学习,设计、评估并合成了新的吡唑衍生物作为潜在的SARS-CoV-2主要蛋白酶(Mpro)抑制剂 | 通过整合组合化学、分子对接和深度学习技术,加速了SARS-CoV-2主要蛋白酶抑制剂的发现,并提供了未来抗病毒药物开发的框架 | NA | 开发新型抗病毒疗法以应对SARS-CoV-2的全球影响 | SARS-CoV-2主要蛋白酶(Mpro) | 药物化学 | COVID-19 | 组合化学、分子对接、深度学习 | DeepPurpose | 化学结构数据 | 超过60,000种吡唑基结构 |