本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1301 | 2025-10-07 |
CommRad RF: A dataset of communication radio signals for detection, identification and classification
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111387
PMID:40103755
|
研究论文 | 本文提出了一个包含2700多个无线电信号的创新数据集,并开发了两种轻量级深度学习模型用于无线电信号处理 | 填补了商用对讲机无线电信号公开数据集的空白,并提出了两种新型轻量级一维卷积神经网络模型 | 数据采集仅限于室内多路径环境,信号来源仅包含27台无线电设备 | 增强通信信道安全性,通过无线电指纹识别技术检测未经授权的传输源 | 商用对讲机和无线电设备的通信信号 | 信号处理 | NA | 无线电信号采集 | CNN | 无线电信号 | 2700多个无线电信号,来自27台无线电设备 | NA | Light Weight 1DCNN, Light Weight Bivariate 1DCNN | NA | NA |
| 1302 | 2025-10-07 |
A novel rotation and scale-invariant deep learning framework leveraging conical transformers for precise differentiation between meningioma and solitary fibrous tumor
2025-Apr, Journal of pathology informatics
DOI:10.1016/j.jpi.2025.100422
PMID:40104410
|
研究论文 | 提出一种旋转和尺度不变性的深度学习框架,用于精确区分脑膜瘤和孤立性纤维瘤 | 采用新型锥形变换器架构,能够捕获全切片图像中的全局和局部成像标记,并适应不同放大倍率的变异 | 研究样本量相对较小(92例患者),需要更大规模验证 | 开发AI诊断工具,精确区分脑膜瘤和孤立性纤维瘤 | 脑膜瘤和孤立性纤维瘤患者 | 数字病理学 | 中枢神经系统肿瘤 | 全切片图像分析 | Transformer | 图像 | 92例患者(46例脑膜瘤,46例孤立性纤维瘤) | NA | 锥形变换器 | 准确率, 灵敏度, 特异性, F1分数 | NA |
| 1303 | 2025-10-07 |
Implementation of A New, Mobile Diabetic Retinopathy Screening Model Incorporating Artificial Intelligence in Remote Western Australia
2025-Apr, The Australian journal of rural health
DOI:10.1111/ajr.70031
PMID:40110918
|
研究论文 | 本文介绍并评估了在澳大利亚偏远西部地区实施的新型移动糖尿病视网膜病变筛查模式,该模式整合了人工智能技术 | 开发了结合人工智能的移动糖尿病视网膜病变筛查新模式,在偏远地区实现即时诊断,并将筛查率提高了11倍 | 样本量相对较小(78名患者),研究仅限于澳大利亚皮尔巴拉地区 | 评估人工智能辅助的移动糖尿病视网膜病变筛查模式在偏远地区的实施效果和患者接受度 | 澳大利亚皮尔巴拉地区的糖尿病患者 | 数字病理 | 糖尿病视网膜病变 | 视网膜成像,人工智能诊断 | 深度学习系统 | 视网膜图像 | 78名患者,其中56.4%为原住民或托雷斯海峡岛民 | NA | NA | 筛查人数,患者接受度,可转诊糖尿病视网膜病变比例,不可分级图像比例 | 集成人工智能诊断的自动化视网膜相机,移动筛查车(梅赛德斯Sprinter Van) |
| 1304 | 2025-03-20 |
Effect of adaptive statistical iterative reconstruction-V algorithm and deep learning image reconstruction algorithm on image quality and emphysema quantification in COPD patients under ultra-low-dose conditions
2025-Apr-01, The British journal of radiology
DOI:10.1093/bjr/tqae251
PMID:39862404
|
研究论文 | 本研究探讨了在超低剂量扫描条件下,不同重建算法(ASIR-V和DLIR)对慢性阻塞性肺疾病(COPD)患者图像质量和肺气肿定量的影响 | 首次在超低剂量CT扫描条件下比较了ASIR-V和DLIR算法对COPD患者图像质量和肺气肿定量的影响,并发现DLIR-M在图像质量和肺气肿定量方面表现最佳 | 样本量相对较小(62名COPD患者),且仅使用了商业计算机辅助诊断(CAD)软件进行分析 | 探讨不同重建算法在超低剂量CT扫描条件下对COPD患者图像质量和肺气肿定量的影响 | 62名COPD患者 | 数字病理 | 慢性阻塞性肺疾病(COPD) | CT扫描、计算机辅助诊断(CAD) | ASIR-V、DLIR | CT图像 | 62名COPD患者 | NA | NA | NA | NA |
| 1305 | 2025-10-07 |
Importance of neural network complexity for the automatic segmentation of individual thigh muscles in MRI images from patients with neuromuscular diseases
2025-Apr, Magma (New York, N.Y.)
DOI:10.1007/s10334-024-01221-3
PMID:39798067
|
研究论文 | 本研究探讨了神经网络复杂度对神经肌肉疾病患者MRI图像中大腿肌肉自动分割的影响 | 首次系统研究神经网络复杂度降低对个体肌肉脂肪分数量化的影响 | 研究样本量相对有限(73名受试者),仅针对大腿肌肉区域 | 评估不同复杂度U-Net架构在神经肌肉疾病患者大腿肌肉分割和脂肪分数量化中的性能 | 神经肌肉疾病患者和健康受试者的大腿MRI图像 | 医学影像分析 | 神经肌肉疾病 | MRI | U-Net | 医学图像 | 1450张大腿图像,来自59名患者和14名健康受试者(共73人) | NA | U-Net, nnU-Net | Dice分数, 脂肪分数量化误差 | GPU内存使用(2.37-12.8 GB),训练时间(14-167小时) |
| 1306 | 2025-03-19 |
Towards precision agriculture: A dataset for early detection of corn leaf pests
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111394
PMID:40083639
|
研究论文 | 本文介绍了一个用于早期检测玉米叶害虫的数据集,旨在通过机器学习和深度学习模型提高精准农业和自动化害虫检测的水平 | 提供了一个包含多种玉米叶害虫图像的数据集,涵盖了不同生长阶段和田间环境下的图像,并包含了手动和算法分割的背景,增强了数据集的多样性和实用性 | 数据集主要基于智能手机拍摄的图像,可能存在图像质量不一致的问题,且背景污染可能影响模型的训练效果 | 开发机器学习和深度学习模型,用于早期检测玉米叶害虫,以支持精准农业和可持续农业实践 | 玉米叶害虫,特别是Spodoptera frugiperda(秋粘虫)、叶枯病和Zonocerus variegatus(杂色蝗虫) | 计算机视觉 | NA | 机器学习和深度学习 | NA | 图像 | 数据集包含1308张未增强的健康叶片图像、11772张增强的健康叶片图像、848张感染叶片图像和7632张增强的感染叶片图像 | NA | NA | NA | NA |
| 1307 | 2025-10-07 |
Can deep learning classify cerebral ultrasound images for the detection of brain injury in very preterm infants?
2025-Apr, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11028-4
PMID:39212671
|
研究论文 | 本研究开发了深度学习模型用于分类早产儿脑部超声图像,区分正常与异常情况,作为计算机辅助检测工具 | 首次将深度学习应用于早产儿脑部超声图像的自动分类,并采用预测不确定性过滤策略提升模型性能 | 模型在初始阶段性能仅达到中等水平,需要多种机器学习策略来提升性能 | 开发计算机辅助检测工具,为早产儿脑部超声扫描提供及时解读 | 极早产婴儿(胎龄220-306周)的脑部超声图像 | 计算机视觉 | 脑损伤 | 脑部超声成像 | CNN | 图像 | 538名婴儿的4180张脑部超声图像 | NA | 卷积神经网络 | ROC AUC, PR AUC, 精确率, 召回率 | NA |
| 1308 | 2025-10-07 |
Kernel representation-based End-to-End network-enabled decoding strategy for precise and medical diagnosis
2025-Apr-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.137233
PMID:39823885
|
研究论文 | 提出一种基于核表示的端到端网络CellNet,用于精确检测密集目标并应用于医学诊断 | 使用形状感知径向基函数学习目标的核表示,提高密集目标计数精度 | NA | 开发精确检测密集目标的神经网络模型并应用于医学诊断 | 粘附聚苯乙烯微球、血清样本中的降钙素原、不规则粘附细胞 | 计算机视觉 | NA | 生物素-链霉亲和素生物传感方法、人工智能转码 | 神经网络 | 数字图像 | NA | NA | CellNet | 检测准确率, 检测限 | NA |
| 1309 | 2025-03-17 |
Spatiotemporal estimates of anthropogenic NOx emissions across China during 2015-2022 using a deep learning model
2025-Apr-05, Journal of hazardous materials
IF:12.2Q1
DOI:10.1016/j.jhazmat.2025.137308
PMID:39847932
|
研究论文 | 本文开发了一种新的深度学习模型,用于模拟GEOS-Chem模型的逆过程,以改进2015-2019年期间的人为NOx排放强度估计,并预测2020-2022年的排放强度 | 使用深度学习模型模拟GEOS-Chem模型的逆过程,提高了NOx排放强度的估计精度 | 模型依赖于高分辨率NO浓度数据集,可能受数据质量和可用性的限制 | 改进人为NOx排放强度的估计,并预测未来几年的排放趋势 | 中国2015-2022年的人为NOx排放 | 机器学习 | NA | 深度学习 | 深度学习模型 | 高分辨率NO浓度数据 | 2015-2022年的NOx排放数据 | NA | NA | NA | NA |
| 1310 | 2025-10-07 |
Generalizable Magnetic Resonance Imaging-based Nasopharyngeal Carcinoma Delineation: Bridging Gaps Across Multiple Centers and Raters With Active Learning
2025-Apr-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.11.064
PMID:39557309
|
研究论文 | 开发了一种结合主动学习和源自由域适应的深度学习方法来分割鼻咽癌大体肿瘤体积,解决多中心和多名标注者场景下的分割模型部署问题 | 首次将主动学习与源自由域适应相结合用于医学图像分割,仅需少量标注样本即可实现跨中心和跨标注者的泛化性能 | 需要少量目标域标注数据进行适应,且在某些多中心数据集上性能与传统全监督方法相比无统计学差异 | 开发能够泛化到多中心和多名标注者环境的鼻咽癌肿瘤体积分割方法 | 鼻咽癌患者的磁共振成像扫描 | 医学图像分析 | 鼻咽癌 | 磁共振成像 | 深度学习 | 医学图像 | 1057例来自5家医院的鼻咽癌患者MRI扫描,外加170例由4名专家标注的独立数据集 | NA | U-Net | Dice相似系数, 95% Hausdorff距离 | NA |
| 1311 | 2025-10-07 |
Prior Knowledge-Guided U-Net for Automatic Clinical Target Volume Segmentation in Postmastectomy Radiation Therapy of Breast Cancer
2025-Apr-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2024.11.104
PMID:39667584
|
研究论文 | 本研究开发了一种先验知识引导的U-Net模型,用于乳腺癌术后放疗中临床靶区的自动分割 | 首次将先验医学知识整合到深度学习框架中,采用两阶段自动分割策略 | 样本量相对有限(102例CT扫描),需进一步扩大验证 | 提高乳腺癌术后放疗中临床靶区自动分割的准确性和效率 | 乳腺癌术后患者的CT扫描图像 | 数字病理 | 乳腺癌 | CT扫描 | U-Net | 医学图像 | 102例乳腺癌患者CT扫描(80例训练,22例测试) | NA | U-Net | Dice相似系数, 95% Hausdorff距离, 平均表面距离, 表面DSC | NA |
| 1312 | 2025-03-17 |
A deep learning framework for multiplet splitting classification in 1H NMR
2025-Apr, Journal of magnetic resonance (San Diego, Calif. : 1997)
DOI:10.1016/j.jmr.2025.107851
PMID:39978294
|
研究论文 | 本文提出了一种名为MuSe Net的深度学习框架,用于一维核磁共振(NMR)光谱中的多重峰分裂分类 | MuSe Net是一种新颖的监督概率深度学习框架,能够模拟专家光谱学家在注释小分子生成的一维NMR光谱时的任务,并利用不确定性量化生成置信度评分 | NA | 开发一种自动化方法,以简化化学化合物的表征,并确保科学界结果的一致性 | 小分子生成的一维NMR光谱 | 机器学习 | NA | NMR | 深度学习 | 光谱数据 | 48个实验性H NMR光谱 | NA | NA | NA | NA |
| 1313 | 2025-03-12 |
Unlocking the potential of digital pathology: Novel baselines for compression
2025-Apr, Journal of pathology informatics
DOI:10.1016/j.jpi.2025.100421
PMID:40059908
|
研究论文 | 本文探讨了数字病理学中全切片图像(WSI)的压缩问题,提出了一种新的评估指标,用于评估感知质量和下游任务质量 | 提出了一种基于特征相似性的新评估指标,能够很好地与压缩WSI的实际下游性能对齐,并鼓励统一评估有损压缩方案以加速数字病理学的临床应用 | 深度学习模型在训练数据中存在的压缩伪影上表现出显著偏差,难以在各种压缩方案中泛化 | 评估和优化数字病理学中全切片图像的压缩方案,以提高临床决策的准确性和效率 | 全切片图像(WSI) | 数字病理学 | NA | 深度学习 | NA | 图像 | 四个不同的数据集 | NA | NA | NA | NA |
| 1314 | 2025-10-07 |
Automatic visual detection of activated sludge microorganisms based on microscopic phase contrast image optimisation and deep learning
2025-Apr, Journal of microscopy
IF:1.5Q3
DOI:10.1111/jmi.13385
PMID:39846854
|
研究论文 | 提出基于显微相差图像优化和深度学习的活性污泥微生物自动视觉检测方法 | 提出基于融合方差的相差图像质量优化算法、轻量级YOLOv8n-SimAM模型和IW-IoU损失函数 | NA | 实现活性污泥微生物的快速准确检测 | 活性污泥中的八种微生物 | 计算机视觉 | NA | 显微相差成像 | YOLOv8 | 显微相差图像 | 包含八种微生物的数据集(具体数量未提及) | NA | YOLOv8n-SimAM | 检测精度, 运行速度 | NA |
| 1315 | 2025-10-07 |
Automated Euler number of the alveolar capillary network based on deep learning segmentation with verification by stereological methods
2025-Apr, Journal of microscopy
IF:1.5Q3
DOI:10.1111/jmi.13390
PMID:39887731
|
研究论文 | 本研究开发基于深度学习的自动化方法用于肺泡毛细血管网络的图像分割和定量分析 | 首次将2D深度学习方法应用于SBF-SEM数据的肺泡毛细血管网络分割,并与传统体视学方法进行验证比较 | 训练数据量有限,采用2D而非3D分割方法,分析数据量不足以获得BPD诱导的ACN改变的代表性数据 | 开发自动化的肺泡毛细血管网络定量分析方法 | 肺泡毛细血管网络 | 数字病理学 | 支气管肺发育不良 | 连续块面扫描电子显微镜 | 深度学习 | 电子显微镜图像 | 有限数量的SBF-SEM数据 | NA | NA | 分割质量评估,结果可靠性验证 | NA |
| 1316 | 2025-03-09 |
Self-Supervised High-Order Information Bottleneck Learning of Spiking Neural Network for Robust Event-Based Optical Flow Estimation
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3510627
PMID:40030563
|
研究论文 | 本文提出了一种基于脉冲神经网络(SNN)的自监督高阶信息瓶颈学习算法SeLHIB,用于在噪声环境下鲁棒地估计基于事件的光流 | 首次提出了基于SNN的自监督信息瓶颈学习策略,并开发了非线性和高阶信息瓶颈学习算法,以增强相关信息的提取和消除冗余 | 现有SNN架构在训练过程中存在泛化能力和鲁棒性不足的问题,特别是在噪声场景中 | 提高基于事件的光流估计的泛化能力和鲁棒性,特别是在噪声环境下 | 基于事件的光流估计 | 计算机视觉 | NA | 自监督学习算法 | SNN(脉冲神经网络) | 事件相机输入 | NA | NA | NA | NA | NA |
| 1317 | 2025-03-09 |
Quantum Gated Recurrent Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519605
PMID:40030602
|
研究论文 | 本文提出了一种量子门控循环神经网络(QGRNNs)模型,旨在解决传统循环神经网络中的梯度消失和爆炸问题,并展示了其在序列学习任务中的有效性 | 将门控机制自然集成到量子神经网络的变分ansatz电路框架中,解决了传统循环神经网络的梯度消失和爆炸问题,并有效缓解了贫瘠高原现象 | NA | 探索量子神经网络(QNNs)的量子优势,并解决传统循环神经网络中的梯度消失和爆炸问题 | 量子门控循环神经网络(QGRNNs) | 量子机器学习 | NA | 量子计算 | 量子门控循环神经网络(QGRNNs) | 序列数据 | NA | NA | NA | NA | NA |
| 1318 | 2025-03-09 |
Glissando-Net: Deep Single View Category Level Pose Estimation and 3D Reconstruction
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2024.3519674
PMID:40030789
|
研究论文 | 本文提出了一种名为Glissando-Net的深度学习模型,用于从单个RGB图像中同时估计类别级物体的姿态并重建其3D形状 | Glissando-Net通过两个联合训练的自动编码器(一个用于RGB图像,另一个用于点云)实现了更准确的3D形状和姿态预测,并引入了2D-3D特征交互和直接预测3D形状与姿态的设计 | 在测试阶段,3D点云的编码器被丢弃,可能限制了模型在某些场景下的表现 | 研究目标是从单个RGB图像中同时估计物体的姿态并重建其3D形状 | 研究对象是类别级物体 | 计算机视觉 | NA | 深度学习 | 自动编码器(Auto-encoders) | RGB图像和点云数据 | NA | NA | NA | NA | NA |
| 1319 | 2025-03-09 |
Latent Weight Quantization for Integerized Training of Deep Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3527498
PMID:40030978
|
研究论文 | 本文提出了一种用于深度神经网络整数化训练的潜在权重量化方案,旨在减少量化对训练过程的扰动 | 首次提出了一种通用的整数化训练潜在权重量化方案,通过残差量化和优化的双量化器最小化量化扰动 | 未明确提及具体限制,但可能涉及硬件实现的复杂性和对不同架构的适应性 | 提高深度神经网络整数化训练的效率和性能 | 深度神经网络,包括ResNets、MobileNetV2和Transformers | 机器学习 | NA | 残差量化和双量化器 | ResNets, MobileNetV2, Transformers | 图像和文本 | 未明确提及具体样本数量,但涉及多种架构和任务 | NA | NA | NA | NA |
| 1320 | 2025-03-09 |
Torsion Graph Neural Networks
2025-Apr, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3528449
PMID:40030998
|
研究论文 | 本文提出了一种新的图神经网络模型TorGNN,通过引入解析扭转来增强图神经网络对非欧几里得数据的分析能力 | TorGNN模型创新性地使用解析扭转作为边权重,以捕捉图局部结构的拓扑信息,从而提升图神经网络的性能 | NA | 提升图神经网络在非欧几里得数据分析中的性能 | 图神经网络模型及其在链接预测和节点分类任务中的应用 | 机器学习 | NA | 解析扭转 | 图神经网络(GNN) | 图数据 | 16种不同类型的网络用于链接预测任务,4种类型的网络用于节点分类任务 | NA | NA | NA | NA |