本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1341 | 2025-03-05 |
AutoFOX: An automated cross-modal 3D fusion framework of coronary X-ray angiography and OCT
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103432
PMID:39700845
|
研究论文 | 本文提出了一种自动化的跨模态3D融合框架AutoFOX,用于冠状动脉X射线血管造影(XA)和光学相干断层扫描(OCT)的融合,以改善冠状动脉疾病的诊断和预后 | AutoFOX框架首次采用了先进的侧支管腔重建算法,增强了分叉病变的评估,并通过深度学习模型TransCAN实现了3D血管对齐,显著提高了对齐精度 | 尽管AutoFOX在3D对齐和分叉病变评估方面表现出色,但其在临床应用中的广泛推广仍需进一步的多中心验证和优化 | 开发一种自动化的3D融合框架,以提高冠状动脉疾病的诊断和预后评估 | 冠状动脉X射线血管造影(XA)和光学相干断层扫描(OCT)数据 | 数字病理学 | 心血管疾病 | 深度学习 | TransCAN | 3D图像 | 多中心数据集 |
1342 | 2025-03-05 |
DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103420
PMID:39705821
|
研究论文 | 本文提出了一种名为DDoCT的双域联合优化低剂量CT成像框架,旨在通过减少管电流和投影数量来降低辐射剂量,同时解决由此引入的噪声和伪影问题 | DDoCT框架在投影和图像域中进行联合优化,不仅解决了减少管电流引入的噪声,还特别关注了减少投影数量引起的条纹伪影问题,提升了在快速低剂量CT成像环境中的适用性 | NA | 开发一种能够在减少辐射剂量的同时,有效降低噪声和伪影的低剂量CT成像方法 | 低剂量CT成像 | 计算机视觉 | NA | CT成像 | 深度学习 | 图像 | NA |
1343 | 2025-03-05 |
Personalized dental crown design: A point-to-mesh completion network
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103439
PMID:39705822
|
研究论文 | 本文介绍了一种端到端的深度学习模型,用于自动生成个性化的牙冠网格 | 提出了一种结合特征提取器和基于transformer的模型,以及点对网格模块的深度学习模型,用于牙冠设计,显著减少了Chamfer距离和MSE | 未提及具体的数据集大小或模型在不同临床环境中的泛化能力 | 开发一种自动生成个性化牙冠的深度学习模型,以提高牙冠设计的效率和准确性 | 牙冠设计 | 计算机视觉 | NA | 深度学习 | transformer, 点对网格模块 | 点云数据 | 未提及具体样本数量 |
1344 | 2025-03-05 |
SurgiTrack: Fine-grained multi-class multi-tool tracking in surgical videos
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2024.103438
PMID:39708509
|
研究论文 | 本文提出了一种名为SurgiTrack的新型深度学习方法,用于在手术视频中进行精细的多类别多工具跟踪 | SurgiTrack利用YOLOv7进行精确的工具检测,并采用注意力机制建模工具的起始方向,作为操作者的代理,以实现工具重新识别 | 手术视频中未明确捕捉到操作者的信息,工具在遮挡或重新插入体内后的重新识别仍然具有挑战性 | 提高手术视频中工具跟踪的准确性和灵活性,以支持计算机辅助干预的成功 | 手术视频中的多类别多工具 | 计算机视觉 | NA | 深度学习 | YOLOv7, 注意力机制 | 视频 | CholecTrack20数据集 |
1345 | 2025-03-05 |
TractGraphFormer: Anatomically informed hybrid graph CNN-transformer network for interpretable sex and age prediction from diffusion MRI tractography
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103476
PMID:39870000
|
研究论文 | 本文介绍了一种名为TractGraphFormer的混合图CNN-Transformer深度学习框架,用于从扩散MRI纤维束成像中预测性别和年龄 | TractGraphFormer结合了局部解剖特征和全局特征依赖,通过图CNN模块捕捉白质几何和灰质连接性,并通过Transformer模块增强全局信息学习,同时包含一个注意力模块用于解释预测性白质连接 | NA | 研究目的是通过扩散MRI纤维束成像预测个体的性别和年龄 | 研究对象包括儿童(n = 9345)和年轻成年人(n = 1065) | 数字病理学 | NA | 扩散MRI纤维束成像 | Graph CNN-Transformer | 图像 | 儿童(n = 9345)和年轻成年人(n = 1065) |
1346 | 2025-03-05 |
Application-driven validation of posteriors in inverse problems
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103474
PMID:39892221
|
研究论文 | 本文提出了一个系统框架,用于在逆问题中基于应用需求验证后验方法 | 首次将目标检测验证中的关键原则应用于后验方法的验证,提出了模式中心验证方法 | 未提及具体局限性 | 解决逆问题中多解情况下的后验方法验证问题 | 后验方法(如条件扩散模型和可逆神经网络) | 计算机视觉 | NA | NA | 条件扩散模型、可逆神经网络 | 图像 | NA |
1347 | 2025-03-05 |
DSAM: A deep learning framework for analyzing temporal and spatial dynamics in brain networks
2025-Apr, Medical image analysis
IF:10.7Q1
DOI:10.1016/j.media.2025.103462
PMID:39892220
|
研究论文 | 本文提出了一种名为DSAM的深度学习框架,用于分析脑网络中的时空动态 | DSAM框架通过时间因果卷积网络捕捉时间动态,使用时间注意单元识别重要时间点,自注意单元构建目标特定的连接矩阵,并采用图神经网络的变体捕捉空间动态,用于下游分类 | NA | 研究目标是开发一种深度学习框架,以更好地理解脑网络中的时空动态 | 研究对象为人类脑网络,具体使用了Human Connectome Project数据集和Adolescent Brain Cognitive Development数据集 | 机器学习 | NA | rs-fMRI | 图神经网络 | 时间序列数据 | Human Connectome Project数据集包含1075个样本,Adolescent Brain Cognitive Development数据集包含8520个样本 |
1348 | 2025-03-05 |
ResGEM: Multi-Scale Graph Embedding Network for Residual Mesh Denoising
2025-Apr, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3378309
PMID:38498760
|
研究论文 | 本文提出了一种新的多尺度图嵌入网络ResGEM,用于残差网格去噪,通过并行处理法线和顶点分支来平衡平滑度和几何细节 | 引入了ResGEM,一种新的图卷积网络,具有多尺度嵌入模块和残差解码结构,用于网格去噪,并提出新的正则化项以增强网络的平滑和泛化能力 | NA | 提高3D网格去噪的精度和效率,特别是在处理具有不规则拓扑结构的网格时 | 噪声污染的3D网格 | 计算机视觉 | NA | 图卷积网络(GCNs) | ResGEM | 3D网格数据 | 合成和真实扫描的数据集 |
1349 | 2025-03-04 |
A comparative analysis of deep learning and chemometric approaches for spectral data modeling
2025-Apr-15, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2025.343766
PMID:40024653
|
研究论文 | 本研究对五种不同的光谱数据分析建模方法进行了全面比较,包括PLS结合经典化学计量学预处理、iPLS结合经典预处理或小波变换、LASSO结合小波变换以及CNN结合光谱预处理 | 提供了预处理方法和模型组合的详尽比较,发现在低数据量环境下无法预先确定最优的预处理和模型组合 | 研究仅限于低维案例研究,可能无法推广到高维数据 | 比较不同建模方法在光谱数据分析中的性能 | 啤酒数据集和废润滑油数据集 | 机器学习 | NA | PLS, iPLS, LASSO, CNN, 小波变换 | PLS, iPLS, LASSO, CNN | 光谱数据 | 啤酒数据集40个训练样本,废润滑油数据集273个训练样本 |
1350 | 2025-03-04 |
Contrastive learning in brain imaging
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文探讨了对比学习在脑成像中的应用及其作为一种无需数据标注的深度学习技术的潜力 | 对比学习通过将数据映射到潜在空间,并假设同类样本在潜在空间中应彼此接近,不同类样本应彼此远离,从而在无需标注的情况下学习数据的代表性特征 | 未明确提及具体的研究限制 | 研究对比学习在医学图像处理和分析中的应用 | 脑成像数据 | 医学影像 | NA | 对比学习 | 深度学习 | 图像 | NA |
1351 | 2025-03-04 |
Feature-targeted deep learning framework for pulmonary tumorous Cone-beam CT (CBCT) enhancement with multi-task customized perceptual loss and feature-guided CycleGAN
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 本文提出了一种针对肺部肿瘤的锥形束CT(CBCT)增强的深度学习框架,通过多任务定制感知损失和特征引导的CycleGAN生成高质量的肺部成像 | 提出了一种新的特征导向深度学习框架,结合多任务学习特征选择网络(MTFS-Net)和特征引导的CycleGAN,有效抑制伪影并保留关键肿瘤信息 | 未提及具体局限性 | 提高肺部CBCT图像质量,以支持肺癌治疗的进一步分析 | 肺癌患者的CBCT图像 | 计算机视觉 | 肺癌 | 深度学习 | CycleGAN | 图像 | 多机构数据集 |
1352 | 2025-03-03 |
COS-DeformDeep: Adaptive 2T2D spectral feature extraction method for improving the component identification performance in mixtures based on handheld Raman technology
2025-Apr-08, Analytica chimica acta
IF:5.7Q1
DOI:10.1016/j.aca.2025.343773
PMID:40021327
|
研究论文 | 提出了一种名为COS-DeformDeep的新方法,用于增强和提取手持拉曼光谱混合物成分识别中的光谱特征 | 结合同步双迹二维相关光谱(2T2D-COS)和可变形卷积(DCNs),提高了深度学习模型在相关峰区域几何变形适应性,从而增强了2T2D-COS中的光谱特征提取能力 | NA | 提高手持拉曼光谱技术在混合物成分识别中的性能 | 乙醇、双丙酮醇和组氨酸三种物质,体积重量比范围为2%到20% | 光谱分析 | NA | 拉曼光谱 | 可变形卷积(DCNs) | 光谱数据 | 三个混合物数据集 |
1353 | 2025-03-03 |
A three-dimensional marine plastic litter real-time detection embedded system based on deep learning
2025-Apr, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2025.117603
PMID:39889545
|
研究论文 | 本文介绍了一种基于深度学习的三维海洋塑料垃圾实时检测嵌入式系统(3D-MPLRD),旨在解决海洋塑料污染问题 | 该系统结合了图像质量评估与增强技术,以应对水下恶劣环境对图像质量的影响,并通过压缩和量化YOLOv5模型,使其适用于嵌入式设备 | 未提及具体的数据集规模或实验环境的多样性限制 | 开发实时清理海洋塑料垃圾的智能系统 | 海洋塑料垃圾 | 计算机视觉 | NA | 深度学习 | YOLOv5 | 图像 | 未提及具体样本数量 |
1354 | 2025-03-02 |
Recipes and ingredients for deep learning models of 3D genome folding
2025-Apr, Current opinion in genetics & development
IF:3.7Q2
DOI:10.1016/j.gde.2024.102308
PMID:39862604
|
review | 本文比较和对比了用于预测基因组接触图的深度学习模型,并探讨了预处理、架构、训练、评估和解释方法 | 强调了不同模型的能力和局限性,并指出了基因组折叠模型面临的挑战、机遇和未来潜在方向 | 主要关注深度学习模型,未涉及其他类型的模型或方法 | 探讨深度学习模型在预测基因组接触图中的应用 | 三维基因组折叠 | machine learning | NA | 深度学习 | 深度学习模型 | 基因组接触图 | NA |
1355 | 2025-02-28 |
Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records
2025-Apr, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105797
PMID:39864108
|
研究论文 | 本研究利用深度学习和电子健康记录(EHR)识别ANCA相关性血管炎(AAV)病例,提出了一种比传统方法更准确的病例识别模型 | 首次使用深度学习模型分析EHR数据来识别AAV病例,相比传统基于规则的方法,能够发现更多遗漏的病例 | 模型在测试队列中的阳性预测值(PPV)较低(0.262),可能影响其在实际应用中的可靠性 | 开发一种基于深度学习的模型,用于从电子健康记录中准确识别ANCA相关性血管炎(AAV)病例 | 电子健康记录(EHR)中的临床文档 | 自然语言处理 | 血管炎 | 深度学习 | 分层注意力网络(HAN) | 文本 | 三个数据集分别包含6000、3008和7500个注释部分,测试队列包含2000个样本 |
1356 | 2025-02-28 |
Hip prosthesis failure prediction through radiological deep sequence learning
2025-Apr, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105802
PMID:39884035
|
研究论文 | 本研究开发了基于多张连续X光片的人工智能模型,用于预测髋关节假体失败 | 首次结合时间序列和空间信息,利用多张连续X光片进行髋关节假体失败预测 | 外部验证集的样本量较小(14例患者),可能影响模型的泛化能力 | 开发基于多张连续X光片的人工智能模型,用于预测髋关节假体失败 | 224名患者的髋关节X光片序列 | 计算机视觉 | 骨科疾病 | 深度学习 | CNN(卷积神经网络)与GRU(门控循环单元)或LSTM(长短期记忆网络)结合 | X光片图像 | 224名患者的X光片序列,其中14名用于外部验证 |
1357 | 2025-02-28 |
Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records
2025-Apr, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105801
PMID:39889672
|
研究论文 | 本研究开发并验证了一个深度学习模型REDAPM,利用区域电子健康记录(EHR)数据预测2型糖尿病患者中的抑郁和焦虑 | REDAPM模型首次整合了区域异构EHR数据,包括结构化和非结构化数据,捕捉临床事件的时间依赖性,显著提升了预测性能 | 研究依赖于特定区域(南京)的EHR数据,可能限制了模型的普适性 | 开发并验证一个深度学习模型,用于预测2型糖尿病患者中的抑郁和焦虑 | 2型糖尿病患者 | 机器学习 | 糖尿病 | 深度学习 | REDAPM | 电子健康记录(EHR)数据 | 内部验证数据集包含24,724名患者,外部验证数据集包含34,340名患者 |
1358 | 2025-02-03 |
A deep learning model for QRS delineation in organized rhythms during in-hospital cardiac arrest
2025-Apr, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105803
PMID:39891984
|
研究论文 | 本文介绍了一种新的深度学习模型,用于在院内心脏骤停期间准确描绘有组织心律中的QRS复合波 | 提出了一种基于U-Net模型的深度学习方法,首次在心脏骤停心律中测试并准确描绘QRS复合波 | 未提及具体局限性 | 提高在院内心脏骤停期间QRS复合波的准确描绘,以支持临床诊断和治疗策略优化 | 院内心脏骤停患者和血流动力学稳定的患者 | 数字病理学 | 心血管疾病 | 深度学习 | U-Net | ECG信号 | 332次院内心脏骤停事件(151815个QRS复合波)和105名血流动力学稳定的患者(112497个QRS复合波) |
1359 | 2025-02-26 |
Improving binding affinity prediction by emphasizing local features of drug and protein
2025-Apr, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种深度学习模型,通过强调药物和蛋白质的局部特征来提高结合亲和力预测的准确性 | 提出了一种新的深度学习模型,能够全面提取药物和靶蛋白的局部特征,用于准确的结合亲和力预测 | NA | 提高药物发现中结合亲和力预测的准确性 | 药物和靶蛋白 | 机器学习 | NA | 深度学习 | Multi-Stream CNN, Multi-Stream GCN | 序列数据(蛋白质序列),图数据(药物分子) | 两个流行数据集:Davis 和 KIBA |
1360 | 2025-02-26 |
Using statistical analysis to explore the influencing factors of data imbalance for machine learning identification methods of human transcriptome m6A modification sites
2025-Apr, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本研究通过统计分析方法探讨了影响机器学习识别人类转录组m6A修饰位点数据不平衡的因素 | 从特征编码表示、深度学习模型和数据重采样策略三个关键角度解决RNA甲基化位点数据不平衡问题,并开发了基于LSTM及其变体mLSTM的分类预测模型,以及使用SeqGAN和SMOTE构建平衡数据集 | 研究中未提及具体的数据集大小和样本类型,可能影响结果的普适性 | 探索影响机器学习识别m6A修饰位点数据不平衡的因素,提高识别准确性 | 人类转录组m6A修饰位点 | 生物信息学 | NA | K-mer one-hot编码策略、LSTM、mLSTM、SeqGAN、SMOTE | LSTM、mLSTM、SeqGAN | RNA序列数据 | NA |