本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1341 | 2025-04-04 |
Benchmarking deep learning for automated peak detection on GIWAXS data
2025-Apr-01, Journal of applied crystallography
IF:5.2Q1
DOI:10.1107/S1600576725000974
PMID:40170972
|
研究论文 | 本文提出了一个用于评估深度学习在GIWAXS数据自动峰值检测中性能的综合框架 | 引入了包含标注实验数据集、物理信息指标和优化基线算法的全面框架,并首次对基于模拟数据训练的深度学习解决方案进行了系统评估 | 研究可能受限于标注数据集的大小和多样性,以及基线算法的选择 | 评估深度学习在GIWAXS数据峰值检测中的可靠性并建立标准化评估体系 | GIWAXS衍射图像数据 | 机器学习和X射线散射数据分析 | NA | GIWAXS和深度学习技术 | 未明确说明具体DL模型类型 | X射线衍射图像数据 | 未明确说明具体样本数量,但提到单日可产生数十万衍射图像 |
1342 | 2025-04-03 |
Continuous glucose feedback control using Raman spectroscopy and deep learning models for biopharmaceutical processes
2025-Apr-02, Biotechnology progress
IF:2.5Q3
DOI:10.1002/btpr.70020
PMID:40172019
|
研究论文 | 本研究探讨了在高消耗、高复杂度的细胞培养过程中,利用拉曼光谱和先进深度学习模型实施连续葡萄糖控制策略 | 结合拉曼光谱和深度学习模型(包括卷积神经网络和变分自编码器即时学习)进行连续葡萄糖控制,提高了葡萄糖测量的准确性和稳定性 | 在制造环境中,拉曼光谱可能不可行,需要开发可扩展的替代方案 | 提高生物制药过程中葡萄糖控制的准确性和稳定性,优化产品质量和生产效率 | 高消耗、高复杂度的细胞培养过程 | 生物制药 | NA | 拉曼光谱 | CNN, 变分自编码器 | 光谱数据 | 多个细胞系 |
1343 | 2025-04-03 |
CabriTrack: Accelerometer data for automated behavioural monitoring of grazing Creole goats
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111431
PMID:40160528
|
研究论文 | 介绍了一个名为CabriTrack的数据集,用于通过加速度计数据自动监测克雷奥尔山羊的放牧行为 | 提供了一个包含144小时以上三轴加速度计数据的数据集,用于训练和评估基于加速度数据的行为预测方法 | 数据集仅针对克雷奥尔山羊,且行为分类有限(五种行为) | 开发自动化动物行为监测方法 | 克雷奥尔山羊的放牧行为 | 机器学习 | NA | 加速度计数据采集和AI行为预测 | NA | 加速度计数据和视频数据 | 59只不同的动物,数据收集时间为2023年3月至2024年3月 |
1344 | 2025-04-03 |
Kidney stone detection via axial CT imaging: A dataset for AI and deep learning applications
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111446
PMID:40160523
|
research paper | 介绍了一个专注于肾结石检测的CT扫描图像数据集,包含有肾结石和无肾结石患者的两组数据 | 提供了一个经过清洗、交叉检查和充分标记的CT图像数据集,支持AI和深度学习在肾结石诊断中的应用 | 数据集主要来自伊拉克Sulaimani和Rania地区的医疗机构,可能无法完全代表其他地区的人口和肾结石模式 | 开发和验证用于肾结石诊断的深度学习模型 | 肾结石患者和无肾结石患者的CT扫描图像 | digital pathology | kidney stone disease | CT imaging | deep learning models | image | 3364 original CT images and 35,457 augmented CT images |
1345 | 2025-04-03 |
FallVision: A benchmark video dataset for fall detection
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111440
PMID:40160526
|
研究论文 | 本文介绍了一个专门为跌倒检测研究策划的综合视频数据集,包含分类的跌倒和非跌倒视频 | 提供了一个全面的跌倒检测视频数据集,包含多种跌倒类别和经过处理的标志视频 | 数据集来源为手持设备拍摄,可能影响视频质量和一致性 | 推进跌倒检测算法的发展,为算法开发和测试提供平台 | 跌倒和非跌倒的视频数据 | 计算机视觉 | 老年疾病 | 计算机视觉和深度学习 | NA | 视频 | 自愿参与者提供的视频数据 |
1346 | 2025-04-03 |
A deep learning algorithm for radiographic measurements of the hip versus human CT measurements: An intermodality agreement study
2025-Apr, Acta radiologica open
IF:0.9Q4
DOI:10.1177/20584601251330554
PMID:40162114
|
研究论文 | 本研究比较了人类在CT扫描和深度学习算法在X光片上对髋关节测量结果的一致性 | 首次使用深度学习算法评估髋关节X光片测量与人类CT测量之间的一致性,并探讨骨盆旋转对测量结果的影响 | 样本量相对较小(172例),且为回顾性研究 | 评估不同髋关节测量方法之间的一致性 | 髋关节发育不良(HD)患者 | 数字病理 | 骨关节炎 | CT扫描和X光成像 | 深度学习算法 | 医学影像 | 172例放射学报告回顾性分析 |
1347 | 2025-04-03 |
Artificial Intelligence Models Accuracy for Odontogenic Keratocyst Detection From Panoramic View Radiographs: A Systematic Review and Meta-Analysis
2025-Apr, Health science reports
IF:2.1Q3
DOI:10.1002/hsr2.70614
PMID:40165928
|
meta-analysis | 评估人工智能模型在全景X光片中检测牙源性角化囊肿的诊断准确性 | 首次通过系统综述和荟萃分析评估AI模型在牙源性角化囊肿诊断中的表现,并比较不同模型架构的性能 | 存在发表偏倚和研究间高度异质性,且样本量有限 | 评估AI模型在全景X光片中检测牙源性角化囊肿的诊断准确性 | 牙源性角化囊肿的全景X光片 | digital pathology | odontogenic keratocyst | deep learning | YOLO | image | 8项研究的数据 |
1348 | 2025-04-03 |
Domain-Adaptive and Per-Fraction Guided Deep Learning Framework for Magnetic Resonance Imaging-Based Segmentation of Organs at Risk in Gynecologic Cancers
2025-Apr, Advances in radiation oncology
IF:2.2Q2
DOI:10.1016/j.adro.2025.101745
PMID:40166000
|
研究论文 | 开发了一种基于深度学习的领域自适应框架,用于在妇科癌症的磁共振成像中自动分割风险器官 | 提出了一种合成MRL辅助的深度学习框架,结合每部分适应性调整,提高了风险器官分割的准确性 | 数据稀缺可能限制了模型的训练效果 | 开发自动化分割算法以支持磁共振成像集成直线加速器治疗系统中的自适应干预 | 妇科癌症患者的磁共振成像和计算机断层扫描数据 | 数字病理学 | 妇科癌症 | 磁共振成像(MRI)和计算机断层扫描(CT) | 生成对抗网络(GAN)和领域自适应分割网络 | 图像 | 158名患者用于CT扫描,25名患者用于MRL扫描 |
1349 | 2025-04-03 |
Leveraging Channel Coherence in Long-Term iEEG Data for Seizure Prediction
2025-Apr-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3556775
PMID:40168220
|
研究论文 | 本研究提出了一种基于相干性分析的癫痫发作预测方法CoSP,结合深度学习和长期颅内脑电图数据,提高了预测准确性 | 结合通道相干性分析和深度学习,提出新的癫痫发作预测方法CoSP,并在长期iEEG数据上验证其有效性 | 研究仅基于10名患者的数据,样本量较小 | 提高癫痫发作预测的准确性和可靠性 | 癫痫患者的颅内脑电图数据 | 生物医学信号处理 | 癫痫 | 脑电图(EEG)分析 | CNN | 脑电图信号 | 10名患者的长期iEEG数据 |
1350 | 2025-04-03 |
Integrating Clinical Insights via Hierarchical Inference to Predict Conditions in Bilaterally Symmetric Organs
2025-Apr-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3556717
PMID:40168215
|
研究论文 | 本文提出了一种用于双侧对称器官疾病预测的双边模型,结合了层次推理和自监督学习技术,以提高预测准确性和可解释性 | 该模型不仅提供初步诊断,还能预测随访时间,通过层次推理和自监督学习增强可解释性,优化计算效率并扩大数据集的有效规模 | 模型主要针对眼科病例,可能在其他双侧对称器官疾病上的泛化能力有待验证 | 开发一种能够同时支持初步诊断和随访预测的深度学习模型,以提升临床决策的可信度和效率 | 双侧对称器官(如眼睛)的疾病诊断和随访预测 | 数字病理学 | 眼科疾病 | 自监督学习 | 稀疏自编码器、诊断分类器和随访分类器 | 图像 | NA |
1351 | 2025-04-03 |
FIND: A Framework for Iterative to Non-Iterative Distillation for Lightweight Deformable Registration
2025-Apr-01, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2025.3556676
PMID:40168217
|
research paper | 该论文提出了一个名为FIND的框架,用于将迭代式变形配准能力高效地转移到非迭代轻量级网络中,以在资源有限的设备上实现快速有效的医学图像配准 | FIND框架通过双重步骤(循环蒸馏和高级特征蒸馏)有效转移复杂变形处理能力,使轻量级网络在保持高精度的同时显著提升速度 | 论文未明确说明该方法在极端变形情况下的表现或跨模态配准的适用性 | 解决深度学习网络在资源受限设备上部署时因复杂性导致的性能限制问题 | 医学图像变形配准任务 | digital pathology | NA | 知识蒸馏 | 非迭代轻量级网络(NIL) | 医学图像 | 四个数据集(未明确样本数量) |
1352 | 2025-04-03 |
MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
2025-Apr-01, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3556420
PMID:40168232
|
research paper | 提出了一种名为MM-GTUNets的多模态图深度学习框架,用于大规模脑部疾病预测 | 引入了Modality Reward Representation Learning(MRRL)动态构建人群图,并采用Adaptive Cross-Modal Graph Learning(ACMGL)捕捉关键模态特定和模态共享特征 | 方法的效果依赖于多模态人群图建模的质量,且随着图规模的增加性能可能下降 | 开发一个端到端的图Transformer多模态图深度学习框架,用于脑部疾病预测 | 脑部疾病(BDs) | machine learning | brain disorders | Graph Transformer, Graph UNet, variational autoencoder | MM-GTUNets | imaging and non-imaging data | 两个公共多模态数据集ABIDE和ADHD-200 |
1353 | 2025-04-03 |
New Machine Learning Method for Medical Image and Microarray Data Analysis for Heart Disease Classification
2025-Apr-01, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01492-9
PMID:40169470
|
研究论文 | 提出一种结合深度神经网络和基因选择的新方法,用于心脏病分类和生物标志物发现 | 提出DeepGeneNet(DGN)框架,将基因选择和DNN分类统一,结合超参数优化和U-Net分割技术 | 未提及具体样本量或外部验证结果 | 提高心脏病分类的准确性和可解释性 | 微阵列基因表达数据 | 机器学习 | 心血管疾病 | 微阵列技术 | DNN, U-Net | 基因表达数据 | NA |
1354 | 2025-04-02 |
Automated Cerebrovascular Segmentation and Visualization of Intracranial Time-of-Flight Magnetic Resonance Angiography Based on Deep Learning
2025-Apr, Journal of imaging informatics in medicine
DOI:10.1007/s10278-024-01215-6
PMID:39133457
|
research paper | 该研究提出了一种基于深度学习的自动化脑血管分割和可视化方法,用于颅内飞行时间磁共振血管成像(TOF-MRA) | 提出了一种优于现有两种深度学习方法的新型CNN模型,其可视化效果被评估为与放射科医生手动重建的外观相似 | 研究未提及模型在更广泛或多样化数据集上的表现,可能限制了其普适性 | 评估深度学习血管分割技术在TOF-MRA中自动获取颅内动脉的图像质量 | 颅内动脉的TOF-MRA扫描图像 | digital pathology | cardiovascular disease | TOF-MRA | CNN | image | 394例TOF-MRA扫描(包括脑血管健康、动脉瘤或狭窄病例) |
1355 | 2025-04-02 |
Quantitative Imaging of Colloidal Structures
2025-Apr-01, Langmuir : the ACS journal of surfaces and colloids
IF:3.7Q2
DOI:10.1021/acs.langmuir.4c05270
PMID:40098481
|
research paper | 该论文提出了一种用于胶体材料显微镜图像定量分析的图像处理和分析方法 | 开发了确保复杂图像准确二值化的方法,并定义了基于二进制对象基本形态特征的度量标准 | 适用于手动标记不实用但深度学习方法不可行的情况,可能不适用于其他场景 | 解决胶体材料显微镜图像定量分析中的挑战 | 胶体聚集体和悬浮液的结构特征 | 图像处理 | NA | 图像处理和分析方法 | NA | 视频显微图像 | 自组装胶体团簇的多样化数据集 |
1356 | 2025-04-02 |
Leveraging sound speed dynamics and generative deep learning for ray-based ocean acoustic tomography
2025-Apr-01, JASA express letters
IF:1.2Q3
DOI:10.1121/10.0036312
PMID:40167492
|
研究论文 | 本文介绍了一种基于生成深度学习框架的射线海洋声学层析成像方法,用于估计声速剖面 | 利用变分自编码器和线性动力学模型对声速剖面变化进行低维参数化,作为进一步的正则化手段 | 方法仅在模拟数据上进行了测试,未涉及实际海洋环境数据 | 解决海洋声学层析成像中的逆问题,即基于多声学换能器之间的到达时间测量估计声速剖面 | 海洋声速剖面 | 机器学习 | NA | 变分自编码器,线性动力学模型 | VAE | 模拟声学数据 | 使用区域海洋模型模拟的声速剖面变化数据 |
1357 | 2025-04-02 |
Attention mechanism-based multi-parametric MRI ensemble model for predicting tumor budding grade in rectal cancer patients
2025-Apr-01, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04886-z
PMID:40167646
|
research paper | 开发并验证了一种基于深度学习的多参数MRI特征集成模型,用于预测直肠癌患者的肿瘤萌芽分级 | 基于注意力机制的Transformer模块用于捕捉不同成像序列间的空间交互,构建多参数集成模型,相比单序列模型能更有效地预测肿瘤萌芽分级 | 模型间AUC值的差异在统计上不显著,样本量相对有限且为回顾性研究 | 预测直肠癌患者的肿瘤萌芽分级,为治疗选择和预后评估提供指导 | 458例经病理证实的直肠癌患者 | digital pathology | rectal cancer | multiparametric MRI (T2WI, DWI) | CrossFormer, Transformer-based attention mechanism | MRI图像 | 458例患者(训练队列248例,内部验证107例,外部验证103例) |
1358 | 2025-04-02 |
Deep learning-based segmentation of gallbladder cancer on abdominal computed tomography scans: a multicenter study
2025-Apr-01, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04887-y
PMID:40167645
|
research paper | 该研究训练并验证了用于从增强CT图像中自动分割胆囊癌(GBC)病变的深度学习模型 | 使用多中心数据集训练和验证了2D和3D图像分割模型,并比较了它们的性能,其中MedSAM表现最佳 | 分割性能与GBC形态无关,且与病变大小的相关性较弱 | 开发并验证用于胆囊癌自动分割的深度学习模型 | 胆囊癌(GBC)患者 | digital pathology | gallbladder cancer | contrast-enhanced CT | SAM Adapter, MedSAM, 3D TransUNet, SAM-Med3D, 3D-nnU-Net | image | 训练和验证队列317例,内部测试队列29例,外部测试队列85例 |
1359 | 2025-04-02 |
Optimizing bladder magnetic resonance imaging: accelerating scan time and improving image quality through deep learning
2025-Apr-01, Abdominal radiology (New York)
DOI:10.1007/s00261-025-04895-y
PMID:40167648
|
research paper | 本研究探讨了深度学习在膀胱T2加权成像中的应用,以加速扫描时间并提高图像质量 | 首次在膀胱MRI中应用深度学习重建技术,显著减少扫描时间并提升图像质量 | 样本量较小(28例患者),且仅针对膀胱癌进行评估 | 评估深度学习在膀胱MRI中的临床应用价值 | 膀胱癌患者 | digital pathology | bladder cancer | T2-weighted imaging, deep learning reconstruction | DL | MRI图像 | 28例连续膀胱癌患者 |
1360 | 2025-04-02 |
Coherence shaping for optical vortices: a coherence shift keying scheme enabled by deep learning for optical communication
2025-Apr-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.549356
PMID:40167728
|
research paper | 本研究提出了一种用于光学涡旋的相干整形方法,并通过深度学习实现了一种相干移位键控方案,用于光通信 | 提出了一种新的相干整形方法,能够生成完全相干和非相干状态之间的非衍射干涉状态,并首次将深度学习应用于相干移位键控方案 | 实验验证仅限于特定条件下的性能测试,未涉及大规模实际应用场景的验证 | 开发一种基于低阶结构光模式的高容量加密移位键控通信系统 | 光学涡旋的相干性和干涉状态 | optical communication | NA | coherence shaping, deep learning | deep learning model | optical interference patterns | NA |