本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1361 | 2025-04-01 |
Artificial intelligence in emergency neuroradiology: Current applications and perspectives
2025-Apr, Diagnostic and interventional imaging
IF:4.9Q1
DOI:10.1016/j.diii.2024.11.002
PMID:39672753
|
综述 | 本文综述了人工智能在急诊神经放射学中的当前应用及未来展望 | 提供了关于人工智能在急诊神经放射学中应用的最新进展和深度分析,包括多种成像模态和现有商业产品的描述 | 未提及具体的技术局限性,但呼吁更多基于临床需求的开发和儿科神经影像学的关注 | 探讨人工智能在急诊神经放射学中的应用现状和未来发展 | 急诊神经放射学中的急性缺血性卒中、颅内出血、颅内动脉瘤、动静脉畸形等疾病 | 数字病理学 | 脑血管疾病 | 机器学习和深度学习算法 | NA | 影像数据 | NA |
1362 | 2025-03-30 |
Quantifying knee-adjacent subcutaneous fat in the entire OAI baseline dataset - Associations with cartilage MRI T2, thickness and pain, independent of BMI
2025-Apr, Osteoarthritis and cartilage
IF:7.2Q1
DOI:10.1016/j.joca.2025.01.001
PMID:39864732
|
research paper | 本研究开发了一种基于人工智能的工具,用于自动分割膝关节邻近皮下脂肪(kaSCF)厚度,并评估了kaSCF与软骨厚度、MRI T2弛豫时间、膝关节疼痛和肌肉力量之间的横断面关联,独立于体重指数(BMI) | 首次使用深度学习算法自动分割kaSCF厚度,并独立于BMI评估其与膝关节骨关节炎相关结构、功能和临床结果的关联 | 研究为横断面设计,无法确定因果关系 | 评估膝关节邻近皮下脂肪(kaSCF)与膝关节骨关节炎相关指标之间的关联 | 骨关节炎倡议(OAI)队列中的4796名参与者的右膝关节基线3.0T MR图像 | digital pathology | osteoarthritis | MRI, deep learning | deep learning algorithms | image | 4796名OAI队列参与者的右膝关节MR图像 |
1363 | 2025-03-29 |
Tea grading, blending, and matching based on computer vision and deep learning
2025-Apr, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.14088
PMID:39711109
|
research paper | 本研究开发了一种基于计算机视觉和深度学习的茶叶分级、混合比例评估和样本匹配的高效无损方法 | 结合ResNet模型和CBAM注意力模块,提高了茶叶图像特征提取能力,显著提升了分类和匹配的准确率 | 仅针对乌龙茶和红茶进行了测试,未涵盖其他茶类 | 提高茶叶生产过程中的分级、混合和样本匹配的效率和准确性 | 乌龙茶和红茶的图像数据 | computer vision | NA | deep learning | ResNet with CBAM | image | NA |
1364 | 2025-03-29 |
Development and validation of a deep learning-based automated computed tomography image segmentation and diagnostic model for infectious hydronephrosis: a retrospective multicentre cohort study
2025-Apr, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2025.103146
PMID:40144691
|
研究论文 | 开发并验证了一种基于深度学习的自动化CT图像分割和诊断模型,用于感染性肾积水的诊断 | 使用改进的U-Net算法开发了肾积水分割模型(HRSM),并结合3D CNN和临床数据建立了感染性肾积水诊断模型(IHDM) | 需要更多多样化的真实世界多中心验证研究来验证模型的稳健性 | 开发一种全自动分割和非侵入性诊断模型,用于感染性肾积水的诊断 | 肾积水患者 | 数字病理 | 肾积水 | CT图像分析 | Improved U-Net, 3D CNN, SVM | CT图像 | 615名患者(包括5876张标注的CT图像) |
1365 | 2025-03-29 |
A data-driven approach to turmeric disease detection: Dataset for plant condition classification
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111435
PMID:40144898
|
研究论文 | 本文提出了一种基于数据驱动的姜黄病害检测方法,并构建了一个用于植物状态分类的数据集 | 构建了一个包含1037张原始图像和4628张增强图像的姜黄植物病害数据集,并应用Inception-v3模型实现了97.36%的分类准确率 | 数据集仅包含五种姜黄植物状态,可能无法涵盖所有可能的病害类型 | 开发AI辅助解决方案以实现精准农业和可持续作物生产 | 姜黄植物及其病害(健康叶片、干枯叶片、叶斑病、根茎病根和健康根茎) | 计算机视觉 | 植物病害 | 数据增强(翻转、旋转、亮度调整) | Inception-v3 | 图像 | 1037张原始图像和4628张增强图像 |
1366 | 2025-03-28 |
CorLabelNet: a comprehensive framework for multi-label chest X-ray image classification with correlation guided discriminant feature learning and oversampling
2025-Apr, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03247-0
PMID:39609353
|
research paper | 提出一个名为CorLabelNet的综合框架,用于多标签胸部X光图像分类,通过相关性引导的判别特征学习和过采样来提高分类性能 | 利用自注意力机制捕捉高阶标签相关性,并从全局和局部角度考虑标签相关性,提出一致性约束和多标签对比损失以增强特征学习,以及利用学习的标签相关性进行过采样的新方法 | 未提及具体的数据集规模限制或计算资源需求 | 提高多标签胸部X光图像分类的性能,解决标签相关性利用不足和类别不平衡问题 | 胸部X光图像 | computer vision | lung cancer | deep learning | self-attention | image | CheXpert和ChestX-Ray14数据集,进行了5折交叉验证实验三次 |
1367 | 2025-03-28 |
Dual Multi Scale Attention Network Optimized With Archerfish Hunting Optimization Algorithm for Diabetics Prediction
2025-Apr, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24739
PMID:39620437
|
研究论文 | 提出了一种结合双多尺度注意力网络和射水鱼狩猎优化算法的糖尿病预测方法 | 使用双多尺度注意力网络(DMSAN)结合射水鱼狩猎优化算法(AHO)进行糖尿病预测,提高了分类准确率 | 仅使用了PIMA印度糖尿病数据集进行验证,未在其他数据集上测试 | 开发更准确的糖尿病预测模型 | 糖尿病患者的血糖数据 | 机器学习 | 糖尿病 | Contrast Limited Adaptive Histogram Equalization Filtering (CLAHEF), Multi-Level Haar Wavelet Features Fusion Network (MHWFFN) | Dual Multi Scale Attention Network (DMSAN), Archerfish Hunting Optimization (AHO) | 结构化医疗数据 | PIMA印度糖尿病数据集(PIDD) |
1368 | 2025-03-28 |
Classifying Alzheimer's Disease Using a Finite Basis Physics Neural Network
2025-Apr, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24727
PMID:39704389
|
research paper | 提出了一种基于有限基物理神经网络(FBPINN)的分类方法CAD-FBPINN,用于阿尔茨海默病(AD)的分类 | 结合了海马优化算法(SHOA)优化FBPINN,提高了AD分类的准确性 | 未提及具体的数据集规模或多样性限制 | 开发一种可靠的AD分类方法,以支持临床治疗应用 | 阿尔茨海默病患者的功能性磁共振成像(MRI)数据 | digital pathology | geriatric disease | functional magnetic resonance imaging (MRI), Newton-time-extracting wavelet transform (NTEWT) | FBPINN, SHOA | image | 数据来自AD Neuroimaging Initiative (ADNI)数据集,但未提及具体样本数量 |
1369 | 2025-03-28 |
Deep learning analysis for rheumatologic imaging: current trends, future directions, and the role of human
2025-Apr-01, Journal of rheumatic diseases
IF:2.2Q3
DOI:10.4078/jrd.2024.0128
PMID:40134548
|
review | 本文综述了深度学习在风湿病影像分析中的应用、当前趋势、未来方向及人类角色的重要性 | 深度学习在风湿病影像分析中的应用展示了超越人类表现的潜力,特别是在关节损伤评估和疾病进展监测方面 | 深度学习面临数据偏见、解释性有限以及需要大量标注数据集等挑战 | 探讨深度学习在风湿病影像分析中的应用及其对未来诊断、治疗决策和个性化医疗的潜在影响 | 风湿病影像数据,包括类风湿性关节炎(RA)、骨关节炎(OA)和脊柱关节炎(SpA)患者的影像 | digital pathology | rheumatoid arthritis, osteoarthritis, spondyloarthritis | 深度学习(DL) | CNN | image | NA |
1370 | 2025-02-12 |
Response to Letter to the Editor Regarding: Multimodal Deep Learning-Based Radiomics Approach for Predicting Surgical Outcomes in Patients With Cervical Ossification of the Posterior Longitudinal Ligament
2025-Apr-15, Spine
IF:2.6Q1
DOI:10.1097/BRS.0000000000005296
PMID:39931786
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1371 | 2025-03-27 |
Deep learning-based prediction of Monte Carlo dose distribution for heavy ion therapy
2025-Apr, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100735
PMID:40129728
|
研究论文 | 提出了一种基于深度学习的模型,用于快速预测重离子治疗中的蒙特卡洛模拟剂量分布 | 开发了Cascade Hierarchically Densely 3D U-Net (CHD U-Net)模型,能够在几秒钟内预测蒙特卡洛剂量分布,且准确率高于现有方法 | 样本量相对较小,仅包含67例头颈患者和30例胸腹患者 | 提高重离子治疗中剂量分布的预测准确性和计算效率 | 头颈和胸腹部位的重离子治疗患者 | 医学影像分析 | 癌症 | 深度学习 | CHD U-Net | CT图像和TPSDose数据 | 67例头颈患者和30例胸腹患者 |
1372 | 2025-03-27 |
External validation of an algorithm to detect vertebral level mislabeling and autocontouring errors
2025-Apr, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100738
PMID:40129727
|
research paper | 该研究对外部验证了一种椎体自动轮廓工具的算法,并研究了一种后处理方法以提高其性能至临床可接受水平 | 开发了一种后处理技术,显著提高了椎体定位的准确性 | 在外部数据集上的性能相比原始训练数据集有所下降 | 验证和改进椎体自动轮廓工具的临床适用性 | CT扫描中的椎体 | digital pathology | NA | machine learning, deep learning | NA | CT scans | 81例CT扫描(40例来自机构A,41例来自机构B) |
1373 | 2025-03-27 |
ADAM: automated digital phenotyping and morphological texture analysis of bone biopsy images using deep learning
2025-Apr, JBMR plus
IF:3.4Q2
DOI:10.1093/jbmrpl/ziaf028
PMID:40129969
|
研究论文 | 开发了一种名为ADAM的自动化流程,用于通过深度学习对骨活检图像进行数字表型分析和形态纹理分析 | ADAM流程能够快速生成组织与细胞图谱,并在无需额外染色的情况下,通过亮场显微镜图像进行骨细胞计数 | 对于形态异质性较高的骨细胞计数,如破骨细胞和成骨细胞,其相关系数相对较低 | 提高骨活检图像分析的自动化程度和准确性,以改善病理工作流程和诊断洞察 | 未脱钙骨活检图像中的组织与细胞成分 | 数字病理学 | 骨病 | 深度学习 | NA | 图像 | 最多20张图像 |
1374 | 2025-03-26 |
Weakly supervised multi-modal contrastive learning framework for predicting the HER2 scores in breast cancer
2025-Apr, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
IF:5.4Q1
|
研究论文 | 提出了一种弱监督多模态对比学习框架(WSMCL),用于预测乳腺癌中的HER2评分 | 首次将多模态(H&E和IHC)联合学习与弱监督对比学习相结合,通过多模态注意力对比学习模块(MACL)实现不同模态特征的语义对齐 | 未提及具体样本量或数据集的多样性限制 | 提高乳腺癌HER2评分的预测准确性 | 乳腺癌全切片图像(WSI)中的HER2评分 | 数字病理学 | 乳腺癌 | 多模态对比学习、多头自注意力(MHSA) | WSMCL(弱监督多模态对比学习框架) | 全切片图像(WSI) | NA |
1375 | 2025-03-26 |
Artificial intelligence-driven forecasting and shift optimization for pediatric emergency department crowding
2025-Apr, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooae138
PMID:40124532
|
研究论文 | 本研究开发并评估了一个基于人工智能(AI)的系统,用于预测儿科急诊科(PED)的拥挤情况,并通过机器学习操作(MLOps)优化医生班次安排 | 结合先进的深度学习模型与MLOps架构,实现持续模型更新,提升预测准确性,并在COVID-19等事件导致的数据漂移中表现出韧性 | 单中心设计和固定的人员配置模型,需多中心验证和在动态人员配置环境中的实施 | 预测儿科急诊科拥挤情况并优化医生班次安排 | 352,843例儿科急诊科入院数据 | 机器学习 | 儿科急诊 | 机器学习操作(MLOps) | Temporal Convolutional Network, Time-series Dense Encoder, Reversible Instance Normalization, Neural High-order Time Series model, Neural Basis Expansion Analysis | 时间序列数据 | 352,843例儿科急诊科入院数据 |
1376 | 2025-03-25 |
Detection of basal cell carcinoma by machine learning-assisted ex vivo confocal laser scanning microscopy
2025-Apr, International journal of dermatology
IF:3.5Q1
DOI:10.1111/ijd.17519
PMID:39627947
|
研究论文 | 本研究开发了一种基于机器学习的算法,用于在离体共聚焦激光扫描显微镜(EVCM)图像中检测基底细胞癌(BCC) | 首次将卷积神经网络(MobileNet-V1)应用于EVCM图像中的BCC检测,以辅助临床决策 | 样本量较小(50张训练图像和19张测试图像),且为概念验证研究 | 通过机器学习算法提高EVCM图像中基底细胞癌的检测效率,减少专业人员培训时间 | 基底细胞癌(BCC)的离体组织样本 | 数字病理学 | 基底细胞癌 | 离体共聚焦激光扫描显微镜(EVCM) | CNN(MobileNet-V1) | 图像 | 50张训练EVCM图像(来自组织学确认的BCC新鲜组织样本)和19张测试图像(10张含肿瘤,9张无肿瘤) |
1377 | 2025-03-25 |
Collaborative Deep Learning and Information Fusion of Heterogeneous Latent Variable Models for Industrial Quality Prediction
2025-Apr, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3537809
PMID:40036535
|
研究论文 | 本文提出了一种结合深度学习和信息融合的异构潜在变量模型框架,用于工业质量预测 | 通过协作逐层特征提取和异构模型集成,提高了质量预测的准确性和稳定性 | 仅通过两个工业案例验证了方法的有效性,可能需要更多案例进一步验证 | 提高工业质量预测的准确性和稳定性 | 工业质量预测系统 | 机器学习 | NA | 深度学习, 信息融合, 集成学习 | 潜在变量模型 | 工业质量数据 | 两个真实工业案例 |
1378 | 2025-03-25 |
Co-Training Broad Siamese-Like Network for Coupled-View Semi-Supervised Learning
2025-Apr, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3531441
PMID:40036533
|
研究论文 | 提出了一种用于耦合视图半监督分类的协同训练宽Siamese-like网络(Co-BSLN) | 利用基于宽学习系统(BLS)的简单浅层网络简化网络结构并减少训练时间,通过直接伪逆计算替代反向传播迭代 | 未提及具体的数据集规模或特定应用场景的限制 | 改进多视图半监督学习的准确性和训练效率 | 多视图数据 | 机器学习 | NA | 宽学习系统(BLS) | Co-BSLN(协同训练宽Siamese-like网络) | 多视图数据 | 未提及具体样本数量 |
1379 | 2025-03-25 |
Evaluation of a novel ensemble model for preoperative ovarian cancer diagnosis: Clinical factors, O-RADS, and deep learning radiomics
2025-Apr, Translational oncology
IF:4.5Q1
DOI:10.1016/j.tranon.2025.102335
PMID:40048985
|
research paper | 本研究开发了一种结合临床变量、O-RADS和深度学习放射组学的集成模型,用于术前卵巢癌诊断,并评估其对超声医师诊断能力的提升效果 | 首次将临床变量、O-RADS评分和深度学习放射组学特征相结合,构建集成模型,显著提高了卵巢癌的诊断准确性和超声医师的诊断能力 | 研究仅基于两个中心的数据,可能需要更多外部验证以确认模型的泛化能力 | 提高术前卵巢癌诊断的准确性并评估模型对超声医师诊断能力的提升效果 | 卵巢癌患者 | digital pathology | ovarian cancer | deep learning radiomics, LASSO method | ensemble model | transvaginal ultrasound images | 来自两个中心的数据(具体样本量未明确说明) |
1380 | 2025-03-25 |
Gran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservation
2025-Apr, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111419
PMID:40124302
|
research paper | 介绍了一个针对Gran Canaria(加那利群岛,西班牙)的新数据集,旨在通过计算机视觉技术自动生成植被地图 | 该数据集在基于航拍图像的语义分割领域中独特,提供了20个明确定义的植被群落的详细注释,超越了现有数据集的广泛分类 | NA | 开发并测试能够自动生成植被地图的深度学习模型,以支持环境监测和保护 | Gran Canaria的植被群落 | computer vision | NA | deep learning, computer vision | NA | aerial imagery | 20个明确定义的植被群落,以及五个非植被类别(如水体、道路或建筑物) |