深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202504-202504] [清除筛选条件]
当前共找到 1392 篇文献,本页显示第 1361 - 1380 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1361 2025-02-26
IDBGL: A unique image dataset of black gram (Vigna mungo) leaves for disease detection and classification
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个独特的黑豆(Vigna mungo)叶片图像数据集,用于疾病检测和分类 创建了一个包含4038张图像的黑豆叶片疾病数据集,涵盖五种不同类别,为全球研究人员提供了一个用于早期检测和分类黑豆叶片疾病的深度学习自动化系统的基础 收集健康样本存在困难,且数据集仅来自孟加拉国的两个地区 开发一个深度学习自动化系统,用于早期检测和分类黑豆叶片疾病,以帮助农民和提高农业利益相关者的意识 黑豆(Vigna mungo)叶片 计算机视觉 植物疾病 深度学习 NA 图像 4038张图像,来自孟加拉国的Sirajganj和Solonga地区
1362 2025-02-26
A dataset of annotated African plum images from Cameroon for AI-based quality assessment
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个包含4507张非洲李子注释图像的数据集,专为AI驱动的李子质量评估设计 这是首个专门用于非洲李子质量评估的AI数据集,涵盖了六个质量等级,并在自然光下使用智能手机拍摄 数据集仅涵盖非洲李子,可能不适用于其他水果的质量评估 开发用于农业中计算机视觉和深度学习系统的数据集,以实现李子质量的自动化评估 非洲李子 计算机视觉 NA NA 深度学习 图像 4507张非洲李子图像
1363 2025-02-26
ElectroCom61: A multiclass dataset for detection of electronic components
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了ElectroCom61,一个包含61种常用电子元件的多类目标检测数据集,旨在提高自动化和效率 提出了一个包含61种电子元件的多类目标检测数据集,涵盖了真实世界中的多种条件,如不同的光照、背景、距离和相机角度 数据集仅来源于一个大学的电子元件收藏,可能无法涵盖所有类型的电子元件 开发一个用于电子元件检测的先进系统,应用于教育和工业领域 61种常用电子元件 计算机视觉 NA 深度学习 NA 图像 2121张经过精心标注的图像
1364 2025-02-26
UAlpha40: A comprehensive dataset of Urdu alphabet for Pakistan sign language
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个名为UAlpha40的综合数据集,用于巴基斯坦手语中的乌尔都语字母 该数据集不仅包含36个静态手势,还包括4个动态手势,填补了之前研究的空白 数据集主要基于巴基斯坦的乌尔都语手语,可能不适用于其他地区的手语 开发一个全面的数据集以支持乌尔都语手语的深度学习模型训练 乌尔都语手语的40个字母,包括36个静态手势和4个动态手势 计算机视觉 NA 图像和视频数据采集与增强 深度学习模型 图像和视频 22,280张图像(其中2,897张为原始图像,19,383张通过噪声或增强生成)和393个视频
1365 2025-02-25
Artificial intelligence-based molecular property prediction of photosensitising effects of drugs
2025-Apr, Journal of drug targeting IF:4.3Q1
研究论文 本研究探讨了利用先进的人工智能工作流程预测药物和化合物光敏效应的可行性 使用三种不同的模型(逻辑回归、XGBoost和深度学习模型Chemprop)预测药物的光敏效应,并在外部验证集上进行了评估 尽管模型在预测光敏效应方面表现出色,但复杂模型在预测分数分布上表现出更高的置信度,这可能限制了简单模型的应用 预测药物和化合物的光敏效应,以减少药物诱导的光敏性不良反应 2200种药物和化合物 机器学习 NA 人工智能工作流程 逻辑回归、XGBoost、Chemprop 药物和化合物的分子属性数据 2200种药物
1366 2025-02-25
Spatial-frequency aware zero-centric residual unfolding network for MRI reconstruction
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本文提出了一种空间频率感知的零中心残差展开网络,用于MRI重建,旨在通过深度学习技术减少k空间欠采样引起的图像域伪影,并提高图像质量 提出了一种可学习的空间频率差异感知模块,补充了可学习的数据一致性层,将k空间域差异映射到空间图像域进行感知补偿,并引入了小波分解的显式先验,通过将图像分解为均值和残差分量,对残差施加精细的零均值约束,同时保持计算效率 未明确提及具体局限性 提高MRI重建的图像质量,减少k空间欠采样引起的伪影 MRI图像 医学影像处理 NA 深度学习 零中心残差展开网络 MRI图像数据 FastMRI和Calgary-Campinas数据集
1367 2025-02-25
Intelligent recognition of subsurface utilities and voids: A ground penetrating radar dataset for deep learning applications
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个专门为深度学习应用设计的GPR数据集,用于自动检测地下设施和空洞 创建了一个包含2,239张JPEG格式的Radargram图像的数据集,填补了GPR数据集的空白,并具有通用性 GPR调查成本高且处理耗时 开发自动化系统,有效检测地下异常,减少人工错误 地下设施(如管道、电缆)和地下空洞 计算机视觉 NA GPR 深度学习模型 图像 2,239张Radargram图像
1368 2025-02-21
Severity grading of hypertensive retinopathy using hybrid deep learning architecture
2025-Apr, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种混合深度学习架构,用于高血压视网膜病变(HR)的严重程度分级 引入了一种结合预训练ResNet-50和修改后的Vision Transformer(ViT)架构的混合模型,通过全局和局部自注意力机制增强模型性能,并提出了基于解耦表示和分类器(DRC)的训练方法以解决类别不平衡问题 缺乏公开可用的HR分级数据集,且存在高类别不平衡问题 开发一种准确的高血压视网膜病变严重程度分级方法 高血压视网膜病变(HR)的严重程度分级 计算机视觉 高血压视网膜病变 深度学习 混合模型(ResNet-50 + 修改后的Vision Transformer) 图像 NA
1369 2025-02-21
Towards practical and privacy-preserving CNN inference service for cloud-based medical imaging analysis: A homomorphic encryption-based approach
2025-Apr, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本文提出了一种基于同态加密的实用且保护隐私的CNN推理框架PPCNN,用于云端医学影像分析 PPCNN框架结合了低扩展同态加密方案和基于噪声的掩码方法,通过优化计算成本、引入系数感知打包方法和数据掩码技术,显著提高了响应时间和降低了使用成本 现有隐私保护解决方案因卷积层内积操作的计算复杂性和非线性激活函数评估的高通信成本而存在显著的延迟问题,使得当前解决方案在实际应用中不切实际 解决移动云端医学影像分析中的隐私保护问题,确保用户在使用云端CNN模型分类私人放射影像时的数据隐私 私人身体相关的放射影像 数字病理 NA 同态加密 CNN 图像 三个真实世界的放射影像数据集
1370 2025-02-21
A bio-lattice deep learning framework for modeling discrete biological materials
2025-Apr, Journal of the mechanical behavior of biomedical materials IF:3.3Q3
研究论文 本文提出了一种基于机器学习的多尺度框架,结合深度神经网络(DNNs)、有限元方法(FEM)和受晶格弹簧模型(LSM)启发的微观结构描述,用于研究离散、空间异质材料的行为 提出了一种新颖的机器学习多尺度框架,结合DNNs、FEM和LSM,用于研究离散、空间异质材料的行为,并开发了一个无假设的晶格框架 未明确提及具体局限性 研究离散、空间异质材料的力学行为 生物组织的微观结构和宏观材料行为 机器学习 NA 深度神经网络(DNNs)、有限元方法(FEM)、晶格弹簧模型(LSM) 深度神经网络(DNNs) 微观结构数据 NA
1371 2025-02-19
Bean leaf image dataset annotated with leaf dimensions, segmentation masks, and camera calibration
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个包含6981张普通豆叶图像的数据库,这些图像附有基准标记和已知叶片尺寸的注释 提供了一个包含详细注释的叶片图像数据库,包括图像分割、已知区域、基准标记区域、标记姿态、拍摄条件和相机校准信息 NA 开发用于叶片尺寸测量及相关问题的深度学习算法 普通豆叶 计算机视觉 NA NA NA 图像 6981张图像,涉及612片普通豆叶
1372 2025-02-13
A comprehensive hog plum leaf disease dataset for enhanced detection and classification
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文介绍了一个全面的Hog plum叶片病害数据集,旨在增强病害的检测和分类 创建了一个全面的Hog plum叶片病害数据集,并通过数据增强技术扩展了数据集,提高了深度学习模型的训练效果 数据集仅包含来自孟加拉国不同地区的图像,可能无法完全代表其他地区的病害情况 开发一个用于早期检测和分类Hog plum叶片病害的机器学习模型,以减少对人工检查的依赖 Hog plum叶片病害 计算机视觉 植物病害 数据增强技术(翻转、旋转、缩放、平移、裁剪、添加噪声、调整亮度、调整对比度、缩放) 深度学习模型 图像 原始数据集包含3782张图像,通过数据增强扩展到20000张图像
1373 2025-02-12
Hematoxylin and Eosin-stained whole slide image dataset annotated for skin tissue segmentation
2025-Apr, Data in brief IF:1.0Q3
研究论文 本文发布了一个用于皮肤组织分割的Hematoxylin和Eosin染色全切片图像数据集,并验证了其有效性 发布了一个包含38张全切片图像及其掩码的数据集,涵盖了12个类别,包括组织、皮肤癌和皮肤层,并使用SegFormer模型验证了数据集的有效性 数据集规模相对较小,仅包含38张图像 通过发布和验证数据集,支持基于深度学习的皮肤疾病自动诊断系统的开发 皮肤组织 数字病理学 皮肤癌 Hematoxylin和Eosin染色 SegFormer 图像 38张全切片图像
1374 2025-02-11
Enhanced clinical photoacoustic vascular imaging through a skin localization network and adaptive weighting
2025-Apr, Photoacoustics IF:7.1Q1
研究论文 本文介绍了一种通过深度学习网络和自适应加权算法来增强临床光声血管成像的方法 结合深度学习网络进行皮肤层分割和自适应加权算法来补偿组织衰减,从而恢复深层血管 未提及具体局限性 提升临床光声血管成像的质量,特别是在深层血管的可视化方面 光声成像中的血管 数字病理学 NA 光声断层扫描(PAT) 深度学习网络 图像 未提及具体样本数量
1375 2025-02-09
Estimating baselines of Raman spectra based on transformer and manually annotated data
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文提出了一种基于Transformer和手动标注数据的拉曼光谱基线估计方法 设计了一种针对拉曼光谱数据的一维Transformer模型(1dTrans),并在基线估计任务中表现优于传统的卷积神经网络(CNN)、ResUNet和三种参数化方法 手动标注数据的过程可能耗时且依赖于参数调整,模型的泛化能力未在更多材料上进行验证 改进拉曼光谱的基线校正方法,以提高定量分析的准确性 拉曼光谱数据 机器学习 NA 拉曼光谱分析 Transformer, CNN, ResUNet 光谱数据 八种不同生物材料的光谱数据
1376 2025-02-10
On the analysis of adapting deep learning methods to hyperspectral imaging. Use case for WEEE recycling and dataset
2025-Apr-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本文评估了在深度学习架构中结合不同空间和光谱特征对高光谱图像分割的影响,并探讨了从RGB图像预训练模型到高光谱领域的知识迁移 提出了不同架构配置,评估了光谱和空间信息对模型性能、能耗和推理时间的影响,并公开了Tecnalia WEEE高光谱数据集 未对所有光谱波长进行优化,且从RGB领域迁移的预训练模型性能较低、能耗较高、推理时间较长 研究高光谱图像分割中空间和光谱信息对深度学习模型性能的影响 高光谱图像 计算机视觉 NA 深度学习 深度学习架构 高光谱图像 Tecnalia WEEE高光谱数据集,包含铜、黄铜、铝、不锈钢和白铜等非铁金属废料
1377 2025-02-10
Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究评估了超分辨率深度学习重建(SR-DLR)在提高薄层3D T2加权成像(T2WI)图像质量和前列腺影像报告与数据系统(PI-RADS)评估中的有效性 使用SR-DLR技术在不延长MRI采集时间的情况下提高图像质量,并评估其对PI-RADS评分的影响 样本量较小(28名患者),且为回顾性研究 评估SR-DLR在提高前列腺MRI图像质量和PI-RADS评分中的有效性 前列腺MRI图像 医学影像 前列腺癌 超分辨率深度学习重建(SR-DLR) 深度学习模型 MRI图像 28名男性患者(年龄范围:47-88岁;平均年龄:70.8岁)
1378 2025-02-10
Conditional generative diffusion deep learning for accelerated diffusion tensor and kurtosis imaging
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究开发了DiffDL,一种生成扩散概率模型,旨在从减少的扩散加权图像(DWI)集中生成高质量的扩散张量成像(DTI)和扩散峰度成像(DKI)指标 DiffDL模型通过生成扩散概率模型解决了扩散MRI数据采集时间过长的问题,同时保持了指标的准确性 未来研究需要优化计算需求,并在临床队列和标准MRI扫描仪上验证模型 开发一种生成扩散概率模型以减少扩散MRI数据采集时间并保持指标准确性 扩散加权图像(DWI) 计算机视觉 NA 扩散张量成像(DTI)和扩散峰度成像(DKI) UNet 图像 300训练/验证对象和50测试对象
1379 2025-02-10
Predicting molecular subtypes of breast cancer based on multi-parametric MRI dataset using deep learning method
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究开发了一种基于多参数MRI的深度学习模型,用于预测乳腺癌的分子亚型 使用五种类型的术前MRI图像,通过集成学习方法融合五个基础模型的输出,构建了一个多参数MRI模型,用于预测乳腺癌的分子亚型 研究样本量相对较小,且为回顾性研究,可能存在选择偏差 开发一种基于多参数MRI的模型,用于预测乳腺癌的分子亚型 325例经病理证实的乳腺癌患者的临床数据和五种MRI图像 数字病理 乳腺癌 多参数MRI成像 ResNeXt50 图像 325例乳腺癌患者(260例训练集,65例测试集)
1380 2024-12-28
Reliability of post-contrast deep learning-based highly accelerated cardiac cine MRI for the assessment of ventricular function
2025-Apr, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究评估了基于深度学习的加速心脏电影MRI在对比剂注射前后的等效性,用于评估心室功能 首次在临床环境中评估了对比剂注射前后基于深度学习的加速心脏电影MRI的图像质量和心室功能量化等效性 样本量较小,仅30名患者,且仅在1.5T扫描仪上进行 评估对比剂注射前后基于深度学习的加速心脏电影MRI在图像质量和心室功能量化上的等效性 30名患者(20名男性,平均年龄53.7±17.8岁) 医学影像 心血管疾病 心脏磁共振成像(MRI) 深度学习 图像 30名患者
回到顶部