本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
581 | 2025-05-30 |
Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI
2025-May-28, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3574090
PMID:40434852
|
research paper | 提出了一种名为DeepSSL的新型高效方法,用于快速动态心脏MRI图像重建,该方法在训练数据极为有限的情况下仍能表现出色 | 利用降维可分离学习方案,结合时空先验知识,开发了DeepSSL网络,显著减少了对训练数据量的需求 | 虽然初步验证了对未见心脏患者的适应性,但可能需要更多临床数据进一步验证其普适性 | 解决心脏动态MRI快速成像中高维数据重建的挑战 | 心脏动态MRI图像 | 医学影像分析 | 心血管疾病 | 动态MRI | DeepSSL(基于2D时空重建模型的深度可分离时空学习网络) | MRI图像数据 | 心脏电影数据集(具体数量未明确说明,但提到减少训练案例需求达75%) |
582 | 2025-05-30 |
Combined Topological Data Analysis and Geometric Deep Learning Reveal Niches by the Quantification of Protein Binding Pockets
2025-May-28, Journal of computational biology : a journal of computational molecular cell biology
IF:1.4Q2
DOI:10.1089/cmb.2025.0076
PMID:40434873
|
研究论文 | 本文结合拓扑数据分析(TDA)和几何深度学习(GDL)来分析酶的假定蛋白质口袋,以全面理解蛋白质结构基序 | 首次整合了局部和全局表示方法来分析蛋白质口袋,提供了对蛋白质结构基序的全面和互补的理解 | 方法在结构已知的情况下特别有用,对于未知结构的情况可能不适用 | 研究蛋白质口袋的定位、测量及其解剖结构,以进一步理解蛋白质功能 | 酶的假定蛋白质口袋 | 计算生物学 | NA | 拓扑数据分析(TDA)、几何深度学习(GDL) | GDL | 蛋白质结构数据 | NA |
583 | 2025-05-30 |
The role of artificial intelligence in implant dentistry: a systematic review
2025-May-28, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2025.04.005
PMID:40436717
|
系统综述 | 本文系统综述了人工智能在牙科种植学中的应用 | 全面分析了2018年至2024年间人工智能在牙科种植学中的多种应用,包括引导手术、诊断、口腔结构分类等 | 领域仍相对不成熟,11项研究存在高偏倚风险 | 分析人工智能在牙科种植学中的应用现状 | 牙科种植学相关研究 | 人工智能 | NA | 深度学习算法 | 深度学习 | 图像(72.0%二维图像和28.0%三维图像) | 120篇相关论文 |
584 | 2025-05-30 |
Efficient feature extraction using light-weight CNN attention-based deep learning architectures for ultrasound fetal plane classification
2025-May-28, Physical and engineering sciences in medicine
IF:2.4Q2
DOI:10.1007/s13246-025-01566-6
PMID:40437331
|
research paper | 提出了一种基于轻量级CNN和注意力机制的深度学习架构,用于超声胎儿平面分类 | 结合轻量级EfficientNet特征提取主干和注意力机制,显著减少可训练参数数量,便于边缘设备部署 | 未提及模型在不同超声设备或操作者间的泛化能力 | 辅助产科医生进行胎儿平面分类,提高产前诊断效率 | 超声胎儿图像中的关键平面(脑部、股骨、胸部、宫颈和腹部) | computer vision | prenatal development | 深度学习 | CNN with attention mechanism | 超声图像 | 最大基准超声数据集(具体数量未提及) |
585 | 2025-05-30 |
Image guided construction of a common coordinate framework for spatial transcriptome data
2025-May-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-01862-x
PMID:40413226
|
research paper | 本文提出了一种名为STaCker的深度学习算法,用于通过图像配准过程统一转录组切片的坐标,以解决空间转录组数据缺乏共同坐标框架的问题 | STaCker通过整合组织图像和基因表达数据,生成抗噪声和批次效应的复合图像表示,并仅使用多样化的合成数据进行训练,克服了训练数据稀缺的问题 | NA | 构建空间转录组数据的共同坐标框架(CCF),以促进数据比较和整合 | 空间转录组数据 | digital pathology | NA | spatial transcriptomics | deep learning | image, gene expression data | multiple slices from various benchmarking datasets and real spatial transcriptome datasets |
586 | 2025-05-30 |
Research on prediction method of well logging reservoir parameters based on Multi-TransFKAN model
2025-May-24, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-96112-5
PMID:40413356
|
研究论文 | 提出了一种基于Multi-TransFKAN模型的测井储层参数预测方法,以提高预测准确性和模型可解释性 | 结合Transformer架构和改进的Kolmogorov-Arnold Network (KAN)框架,用傅里叶函数替代B样条函数,有效捕捉复杂周期性和非线性特征 | 未提及具体的数据集规模或地域限制,可能影响模型的泛化能力 | 提高储层参数预测的准确性和模型的可解释性 | 储层参数(孔隙度、泥质含量、含水饱和度) | 机器学习 | NA | Monte Carlo Dropout, SHAP框架 | Multi-TransFKAN (结合Transformer和KAN) | 测井数据 | 未明确提及具体样本数量,仅提到测试井 |
587 | 2025-05-30 |
The role of artificial intelligence in occupational health in radiation exposure: a scoping review of the literature
2025-May-16, Environmental health : a global access science source
IF:5.3Q1
DOI:10.1186/s12940-025-01186-3
PMID:40380224
|
综述 | 本文回顾了人工智能在职业辐射暴露评估、监测、控制及防护中的应用研究 | 全面梳理了AI在职业辐射暴露管理中的多种工具(如专家系统、机器学习、深度学习)的应用现状,并识别了当前研究的关键挑战 | 纳入研究存在数据质量参差不齐、算法可解释性不足、与现有系统整合困难等局限性 | 评估人工智能在职业辐射暴露风险管理中的潜在作用 | 职业辐射暴露相关的评估、监测、控制及防护系统 | 职业健康与安全 | 辐射相关疾病 | 专家系统、机器学习、深度学习等AI模型 | 多种AI模型(未指定具体模型) | 文献数据 | 59篇符合条件的文献(初始检索2920篇) |
588 | 2025-05-30 |
Ultrasound-based deep learning radiomics for enhanced axillary lymph node metastasis assessment: a multicenter study
2025-May-08, The oncologist
DOI:10.1093/oncolo/oyaf090
PMID:40349137
|
研究论文 | 本研究开发了一种基于超声的深度学习放射组学模型,用于评估乳腺癌患者的腋窝淋巴结转移,并验证了其对放射科医生诊断准确性的提升效果 | 结合深度学习和手工放射组学特征,构建了临床-放射组学模型,并在多中心数据集中验证了其性能 | 研究样本来自6家医院,可能存在选择偏倚,且未考虑不同超声设备的差异性 | 提高乳腺癌患者腋窝淋巴结转移的术前评估准确性 | 乳腺癌患者 | 数字病理 | 乳腺癌 | 超声成像 | 深度学习放射组学模型 | 超声图像 | 866名乳腺癌患者(来自6家医院) |
589 | 2025-05-30 |
Wearable Artificial Intelligence for Sleep Disorders: Scoping Review
2025-May-06, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/65272
PMID:40327852
|
综述 | 本文对用于睡眠障碍的AI可穿戴设备进行了范围综述,重点关注研究特征、可穿戴技术特点及AI检测与分析方法 | 综述了AI可穿戴设备在睡眠障碍领域的应用现状,指出了当前研究主要集中在睡眠呼吸暂停,并提出了未来研究方向 | 研究仅限于睡眠呼吸暂停,对其他睡眠障碍的研究不足,且缺乏对治疗效果的研究 | 概述AI驱动的可穿戴设备在睡眠障碍领域的应用情况 | AI驱动的可穿戴设备及其在睡眠障碍检测与分析中的应用 | 人工智能在医疗健康中的应用 | 睡眠障碍 | AI算法 | CNN, 随机森林, 支持向量机 | 呼吸数据、心率、身体运动数据 | 46项符合条件的研究 |
590 | 2025-05-30 |
Current Technological Advances in Dysphagia Screening: Systematic Scoping Review
2025-May-05, Journal of medical Internet research
IF:5.8Q1
DOI:10.2196/65551
PMID:40324167
|
系统性范围综述 | 本文对人工智能和传感器技术在吞咽困难筛查中的最新进展进行了系统性范围综述 | 首次全面评估AI和传感器技术在吞咽困难筛查中的应用现状和性能表现 | 存在方法学质量风险,特别是患者选择、指标测试和建模方面,且缺乏外部验证研究 | 评估AI和传感器技术在吞咽困难筛查中的应用现状和性能 | 吞咽困难筛查技术 | 医疗人工智能 | 吞咽困难 | AI和传感器技术 | 支持向量机(SVM)和深度学习 | 声学和振动信号数据 | 24项研究,共2979名参与者(1717名吞咽困难患者和1262名对照组) |
591 | 2025-05-30 |
Diagnostic performance of deep learning-based coronary computed tomography angiography in detecting coronary artery stenosis
2025-May, The international journal of cardiovascular imaging
DOI:10.1007/s10554-025-03383-0
PMID:40156689
|
研究论文 | 验证一种基于冠状动脉计算机断层扫描血管造影(CCTA)的全自动深度学习模型,用于诊断阻塞性冠状动脉疾病(CAD)中狭窄≥50%的情况 | 提出了一种全自动深度学习模型,用于快速准确地识别冠状动脉狭窄≥50%的患者,显著提高了诊断效率 | 研究仅限于特定时间段内的多中心数据,可能无法完全代表所有人群 | 验证深度学习模型在诊断冠状动脉狭窄中的性能 | 疑似冠状动脉疾病(CAD)患者 | 数字病理 | 心血管疾病 | 冠状动脉计算机断层扫描血管造影(CCTA) | 3D Multi-resolution Cascade CNN, 3D Cascade-Locally Optimized Network, Stenosis Analysis Network | 图像 | 1090名患者(平均年龄59.90±11.51岁,47.3%为女性) |
592 | 2025-05-30 |
Construction of a deep learning model and identification of the pivotal characteristics of FGF7- and MGST1- positive fibroblasts in heart failure post-myocardial infarction
2025-May, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.143171
PMID:40258553
|
研究论文 | 该研究通过构建深度学习模型并识别FGF7-和MGST1-阳性成纤维细胞在心梗后心力衰竭中的关键特征,揭示了这些细胞在疾病发展中的作用 | 首次发现FGF7MGST1成纤维细胞在心梗后心力衰竭中的下调现象,并通过单细胞RNA测序和深度学习模型揭示了其关键基因特征和预测价值 | 研究主要基于小鼠模型和生物信息学分析,需要进一步的人类样本验证 | 探究成纤维细胞异质性在心梗后心力衰竭中的作用机制 | FGF7-和MGST1-阳性成纤维细胞 | 数字病理学 | 心血管疾病 | scRNA-seq, qRT-PCR, 孟德尔随机化分析 | 深度学习模型 | 单细胞RNA测序数据 | 未明确说明样本数量,使用小鼠模型和生物信息学数据 |
593 | 2025-05-30 |
The prediction of RNA-small molecule binding sites in RNA structures based on geometric deep learning
2025-May, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.143308
PMID:40268011
|
研究论文 | 该论文提出了一种基于几何深度学习的计算方法RLBSIF,用于预测RNA结构中RNA与小分子配体的结合位点 | 利用表面几何特征和化学特征结合MaSIF-based表面相互作用指纹全面表征RNA-配体相互作用,并采用ResNet18网络分析这些指纹以识别配体结合口袋 | 训练数据仅包含440个结合口袋,可能限制了模型的泛化能力 | 准确预测RNA结构中配体的结合位点,以指导药物设计和医学领域的研究 | RNA与小分子配体的结合位点 | 机器学习和计算生物学 | NA | 几何深度学习 | ResNet18 | RNA结构数据 | 440个结合口袋 |
594 | 2025-05-30 |
Predicting transmission loss in underwater acoustics using continual learning with range-dependent conditional convolutional neural networks
2025-May-01, The Journal of the Acoustical Society of America
IF:2.1Q1
DOI:10.1121/10.0036773
PMID:40439448
|
研究论文 | 本文提出了一种基于持续学习和范围依赖条件卷积神经网络的方法,用于预测水下声学传输损失,以提高远场场景下的预测准确性 | 引入了一种范围依赖条件卷积神经网络,通过直接对输入地形进行条件化,单步预测传输损失场,并采用基于回放的持续学习策略,实现跨连续地形变化的泛化 | 模型在远场波预测方面可能存在局限性,且依赖于输入地形的准确性 | 提高深度学习模型在远场场景下预测水下辐射噪声的准确性 | 水下声学传输损失 | 机器学习 | NA | 持续学习,卷积神经网络 | CNN | 地形数据,声学数据 | 多个测试案例和涉及Dickins Seamount的基准场景 |
595 | 2025-05-29 |
DeepMBEnzy: An AI-Driven Database of Mycotoxin Biotransformation Enzymes
2025-May-28, Journal of agricultural and food chemistry
IF:5.7Q1
DOI:10.1021/acs.jafc.5c02477
PMID:40378051
|
研究论文 | 开发了一个名为DeepMBEnzy的AI驱动数据库,用于预测和存档霉菌毒素生物转化酶 | 通过微调预训练模型并使用冷蛋白数据分割方法,开发了EPP-MB模型,用于预测霉菌毒素生物转化酶,并构建了DeepMBEnzy数据库 | 目前仅识别了少数霉菌毒素生物转化酶,且模型的验证准确率为79%,仍有提升空间 | 促进霉菌毒素解毒研究和应用中的酶候选物的探索和利用 | 霉菌毒素及其生物转化酶 | 机器学习 | NA | 深度学习 | 预训练模型微调 | 蛋白质数据 | 超过4000种霉菌毒素 |
596 | 2025-05-29 |
Data augmentation using masked principal component representation for deep learning-based SSVEP-BCIs
2025-May-28, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/add9d1
PMID:40378852
|
研究论文 | 本研究提出了一种基于主成分表示掩码的数据增强方法(MPCR),用于提升基于稳态视觉诱发电位的脑机接口(BCI)中深度学习模型的分类准确率 | 提出了一种新的组件级数据增强方法MPCR,通过主成分表示和随机掩码策略引入随机扰动,同时保留EEG信号的主要内在结构 | 未明确提及具体局限性,但暗示当前信号级数据增强方法可能导致EEG信号显著失真 | 提升基于稳态视觉诱发电位(SSVEP)的脑机接口(BCI)中深度学习模型的分类准确率 | 稳态视觉诱发电位(SSVEP)和脑电图(EEG)信号 | 脑机接口(BCI) | NA | 主成分分析(PCA)和随机掩码策略 | 深度学习模型(未指定具体类型) | 脑电图(EEG)信号 | 两个广泛使用的公共数据集(未明确样本数量) |
597 | 2025-05-29 |
Brain stimulation outcome prediction in Major Depressive Disorder by deep learning models using EEG representations
2025-May-28, Computer methods in biomechanics and biomedical engineering
IF:1.7Q3
DOI:10.1080/10255842.2025.2511222
PMID:40434017
|
research paper | 该研究利用深度学习模型基于脑电图(EEG)表征预测重度抑郁症(MDD)患者对重复经颅磁刺激(rTMS)治疗的反应 | 开发了一种基于三种预训练卷积神经网络(DenseNet121、EfficientNetB0和Xception)的深度混合神经网络,用于从三种EEG表征中预测治疗效果,其中使用原始EEG图像序列的分类准确率最高达到94.7% | 研究样本量较小(83名患者),且未提及模型在其他独立数据集上的验证情况 | 开发个体化治疗选择框架,以节省MDD患者的治疗时间和成本,并避免可能的副作用 | 83名接受rTMS治疗的MDD患者 | digital pathology | geriatric disease | EEG, rTMS | CNN (DenseNet121, EfficientNetB0, Xception) | EEG信号(包括小波变换图像、电极间连接矩阵和原始EEG信号) | 83名MDD患者 |
598 | 2025-05-29 |
Frontalis Only Contracts in One Direction: AI-Quantum Elasticity and Resistance Gradient Reveals True Nature of Forehead Muscle Movement
2025-May-27, Aesthetic plastic surgery
IF:2.0Q2
DOI:10.1007/s00266-025-04924-7
PMID:40425886
|
research paper | 本研究通过AI驱动的生物力学模型和量子弹性与阻力梯度(QERG)模型,揭示了额肌收缩的单向性及其与皮肤相互作用的机制 | 引入了量子弹性与阻力梯度(QERG)模型,挑战了传统的双向收缩理论,并通过AI模型高精度预测皮肤行为 | 研究样本虽多样化,但可能未涵盖所有可能的种族和年龄组,且证据等级为III级,需进一步验证 | 探究额肌收缩的生物力学特性及其与皮肤相互作用的真实机制 | 额肌收缩及其对皮肤的动态影响 | 生物力学 | NA | 深度学习框架(TensorFlow, PyTorch)、有限元分析、随机森林、深度神经网络 | AI-driven biomechanical model, QERG model | 3D面部扫描数据 | 600名不同种族、性别和年龄的受试者 |
599 | 2025-05-29 |
Development of a No-Reference CT Image Quality Assessment Method Using RadImageNet Pre-trained Deep Learning Models
2025-May-27, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01542-2
PMID:40425960
|
研究论文 | 提出了一种基于RadImageNet预训练深度学习模型的无参考CT图像质量评估方法 | 利用结合噪声和模糊两种退化因素的数据集训练CNN模型,并采用RadImageNet预训练模型增强对真实世界退化的适应性 | 仅考虑了噪声和模糊两种退化因素,可能未涵盖所有实际临床中的退化类型 | 开发一种无需参考图像即可准确评估CT图像质量的方法 | CT图像 | 计算机视觉 | NA | 深度学习 | CNN(ResNet50, DenseNet121, InceptionV3, InceptionResNetV2) | 图像 | 人工退化图像数据集和真实临床图像数据集 |
600 | 2025-05-29 |
Deep Learning Auto-segmentation of Diffuse Midline Glioma on Multimodal Magnetic Resonance Images
2025-May-27, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01557-9
PMID:40425959
|
研究论文 | 开发了一种基于改进CNN的3D-Unet工具,用于自动准确分割弥漫性中线胶质瘤(DMG)在磁共振(MR)图像中的区域 | 首次针对DMG开发了自动分割工具,采用改进的3D U-Net架构,结合多种MR图像序列,实现了高精度的肿瘤分割 | 样本量相对较小(52名患者,70张图像),且仅针对特定类型的儿科脑干癌 | 提高DMG肿瘤分割的自动化水平和准确性,以支持诊断和预测模型的开发 | 弥漫性中线胶质瘤(DMG)H3 K27M突变型患者的MR图像 | 数字病理学 | 脑癌 | 磁共振成像(MRI) | 3D U-Net with residual blocks | 图像 | 52名DMG患者,70张MR图像(包含T1W、T2W和FLAIR序列) |