深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202505-202505] [清除筛选条件]
当前共找到 1557 篇文献,本页显示第 821 - 840 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
821 2025-05-21
Prenatal Diagnostics Using Deep Learning: A Dual Approach to Plane Localization and Cerebellum Segmentation in Ultrasound Images
2025-May, Journal of clinical ultrasound : JCU IF:1.2Q3
research paper 本研究开发了两种深度学习技术,用于通过第五个月超声脑图像进行神经发育障碍的产前预测 提出了两种专门的CNN架构:用于平面定位的差分CNN和用于小脑分割的双CNN,这些架构针对特定任务设计,提高了诊断准确性 研究承认存在某些局限性和挑战 开发深度学习技术用于神经发育障碍的产前预测 第五个月超声脑图像 digital pathology neurodevelopmental disorder ultrasound imaging CNN image 标注的超声图像数据集
822 2025-05-21
Combining Ultrasound Imaging and Molecular Testing in a Multimodal Deep Learning Model for Risk Stratification of Indeterminate Thyroid Nodules
2025-May, Thyroid : official journal of the American Thyroid Association IF:5.8Q1
研究论文 本研究提出了一种结合超声成像和分子检测的多模态深度学习模型,用于提高甲状腺结节的恶性风险分层 通过整合超声成像和分子检测数据,利用互补信息提升恶性风险分层的阳性预测值,同时保持高敏感性 研究受限于单中心数据集、缺乏外部验证以及使用二值化的分子检测输出而非细粒度的恶性风险概率 提高甲状腺结节的恶性风险分层准确性 333名不确定甲状腺结节患者(259例良性,74例恶性) 数字病理 甲状腺结节 下一代测序(NGS) 多模态深度学习模型 超声图像和分子检测数据 333名患者
823 2025-05-21
Expert consensus document on artificial intelligence of the Italian Society of Cardiology
2025-May-01, Journal of cardiovascular medicine (Hagerstown, Md.)
专家共识 意大利心脏病学会关于人工智能在心血管疾病管理中应用的专家共识文件 探讨了人工智能(AI)在心血管疾病诊断和预后中的新兴应用,包括机器学习和深度学习模型的使用 算法的外部有效性无法保证,结果的可解释性可能存在问题(即“黑箱”问题) 探索人工智能在心血管疾病管理中的潜力和应用 心血管疾病患者,包括高血压、缺血性心脏病和罕见的心肌病等 人工智能在医疗健康中的应用 心血管疾病 机器学习(ML)和深度学习(DL) 人工神经网络 医院数据集、心电图和超声心动图采集数据 NA
824 2025-05-21
Enhancing perihematomal edema segmentation: integrating prior knowledge with deep learning for enhanced accuracy and interpretability
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 该研究提出了一种结合先验知识与深度学习的网络PESE-Net,用于提高颅内血肿周围水肿(PHE)分割的准确性和可解释性 提出PESE-Net网络,通过结合PHE的先验知识与深度学习方法,采用新的特征加权策略协同融合PHE的整体变化特征和空间信息 未提及具体的数据集规模或外部验证结果 提高PHE分割的准确性以增强临床诊断效率和可靠性 自发性颅内出血图像中的PHE区域 digital pathology cardiovascular disease deep learning PESE-Net image NA
825 2025-05-21
Free-breathing pediatric cardiac dark-blood imaging with reverse double inversion-recovery and single-shot deep learning reconstruction
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 该研究结合反向双反转恢复(RDIR)和基于人工智能辅助压缩感知(ACS)重建的单次激发暗血快速自旋回波(SS-RDIR)技术,实现了自由呼吸下儿童心脏高分辨率运动鲁棒性水肿评估 结合RDIR和ACS重建的SS-RDIR技术显著缩短扫描时间并提高图像质量,优于传统多激发技术 研究样本量较小(20名健康儿童和47名儿科患者),且未提及长期临床效果验证 开发一种自由呼吸下儿童心脏高分辨率运动鲁棒性水肿评估方法 健康儿童和儿科患者的心脏成像 数字病理 心血管疾病 暗血T2加权快速自旋回波(DB-FSE)、反向双反转恢复(RDIR)、人工智能辅助压缩感知(ACS)重建 AI-assisted compressed sensing (ACS) 医学影像 67名受试者(20名健康儿童和47名儿科患者)
826 2025-05-21
MHAU-Net: a multi-scale hybrid attention U-shaped network for the segmentation of MRI breast tumors
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出了一种名为MHAU-Net的多尺度混合注意力U型网络,用于MRI乳腺肿瘤的分割 使用四组不同扩张率的空洞卷积提取多尺度上下文信息,并结合通道和空间注意力块提取混合注意力特征,提高了对不同大小和形状肿瘤的适应性 未提及具体的局限性 实现MRI扫描中乳腺肿瘤的准确自动分割 MRI乳腺肿瘤图像 digital pathology breast cancer MRI MHAU-Net (基于3D U-Net的改进) 3D图像 906张3D乳腺MRI图像
827 2025-05-21
Detection-guided deep learning-based model with spatial regularization for lung nodule segmentation
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 提出了一种结合检测引导和空间正则化的深度学习模型,用于肺部结节的分割 整合了基于U-Net的分割和基于ResNet的分类过程,并应用特征组合块和空间正则化技术以提高精度 训练数据集有限,可能影响模型的泛化能力 开发一种准确可靠的肺部结节分割方法,以辅助放射科医生提高诊断准确性 肺部结节 计算机视觉 肺癌 深度学习 U-Net, ResNet CT图像 NA
828 2025-05-21
Lightweight attention network for guidewire segmentation and localization in clinical fluoroscopic images of vascular interventional surgery
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 本研究提出了一种轻量级注意力网络,用于血管介入手术临床荧光图像中导丝的分割与定位 引入了双边特征融合(BGA)模块和轻量级门控注意力(SDA)模块,提高了导丝分割的精确度 研究中使用的数据集仅来自38名受试者,样本量相对较小 提升经导管动脉化疗栓塞术(TACE)中导丝输送的精确性和实用性 临床荧光图像中的导丝 computer vision cardiovascular disease 深度学习 CNN image 2,839张X射线图像,来自38名受试者
829 2025-05-21
Deep learning-based key point detection algorithm assisting vessel centerline extraction
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
research paper 提出一种基于深度学习的关键点检测算法,用于辅助血管中心线提取,以提升斑块定量分析的准确性 针对迂曲血管中心线提取误差大的问题,提出关键点检测算法,显著提升检测精度和效率 研究为回顾性设计,且仅针对脑血管疾病患者,可能限制结果的普适性 提升血管中心线提取精度以辅助斑块定量评估 539名接受3.0-T MRI扫描的脑血管疾病患者 digital pathology cerebrovascular disease 3.0-T MRI deep learning medical image 539例多中心脑血管疾病患者MRI影像
830 2025-05-21
Bibliometric analysis of the application of artificial intelligence in orthopedic imaging
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 通过文献计量分析总结了基于AI的骨科影像学知识结构,并探讨了其潜在研究趋势和焦点 首次通过文献计量学方法系统分析AI在骨科影像学中的应用,揭示了研究热点和未来趋势 仅基于WoSCC数据库,可能遗漏其他数据库的重要文献 总结AI在骨科影像学领域的知识结构并探索研究趋势 2007-2024年间WoSCC数据库中关于AI在骨科影像学应用的文献 医学影像分析 骨科疾病 文献计量分析 CNN 文献数据 3,147篇出版物
831 2025-05-21
Value of deep learning model for predicting Breast Imaging Reporting and Data System 3 and 4A lesions on mammography
2025-May-01, Quantitative imaging in medicine and surgery IF:2.9Q2
研究论文 评估基于乳腺X线摄影的深度学习模型在区分BI-RADS 3和4A病变中的诊断价值及其对放射科医生决策的影响 深度学习模型显著提高了初级放射科医生对BI-RADS 3和4A病变的诊断性能,有效减少漏诊和不必要的活检 研究为回顾性多中心研究,可能受到选择偏倚的影响,且深度学习模型的性能仍逊于资深放射科医生 评估深度学习模型在乳腺X线摄影中区分BI-RADS 3和4A病变的诊断价值 824名患者的846个乳腺X线摄影检测到的乳腺病变(BI-RADS 3和4A) 数字病理 乳腺癌 深度学习 DL模型 图像 846个乳腺病变(来自824名患者)
832 2025-05-21
Light Bladder Net: Non-invasive Bladder Cancer Prediction by Weighted Deep Learning Approaches and Graphical Data Transformation
2025-May, Anticancer research IF:1.6Q4
research paper 该研究开发了一种轻量级深度学习模型Light-Bladder-Net (LBN),用于通过常规尿液数据非侵入性预测膀胱癌 通过数据转换、添加均匀噪声、特征选择方法及加权投票策略,提高了模型的泛化能力和分类准确性 未提及模型在更大规模或多样化数据集上的验证情况 开发一种快速、轻量级的非侵入性膀胱癌检测方法 膀胱癌患者的常规尿液数据 digital pathology bladder cancer deep learning, feature selection methods (mRMR, PCA, SVD, t-SNE) Light-Bladder-Net (LBN) urine data NA
833 2025-05-20
Federated Learning for Renal Tumor Segmentation and Classification on Multi-Center MRI Dataset
2025-May-19, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 评估联邦学习在多中心MRI数据集上用于肾肿瘤分割和分类的性能和可靠性 使用联邦学习作为隐私保护方案,在多中心数据集上训练深度学习模型,避免了数据共享的限制 研究为回顾性多中心研究,样本量相对有限,且仅在模拟机构环境中测试 评估联邦学习在肾肿瘤分割和分类中的性能与可靠性 肾肿瘤患者的多中心MRI数据 数字病理学 肾癌 MRI (T2WI和CE-T1WI序列) nnU-Net (分割), ResNet (分类) MRI图像 987名患者(来自6家医院),其中785名用于训练,104名用于验证,99名用于测试
834 2025-05-20
Development and Validation an Integrated Deep Learning Model to Assist Eosinophilic Chronic Rhinosinusitis Diagnosis: A Multicenter Study
2025-May-19, International forum of allergy & rhinology IF:7.2Q1
research paper 开发并验证了一个集成的深度学习模型,用于辅助诊断嗜酸性慢性鼻窦炎(eCRS) 首次使用CT图像和临床参数结合深度学习模型进行eCRS的非侵入性术前预测,并探索了预测结果的生物学基础 样本量相对较小,且仅来自两家医院,可能影响模型的泛化能力 开发一种非侵入性的术前预测方法,以辅助eCRS的诊断 嗜酸性慢性鼻窦炎(eCRS)患者 digital pathology chronic rhinosinusitis CT imaging, proteomic analysis 3D-ResNet, 3D-Xception, HR-Net, SVM CT images, clinical parameters 1098名患者(来自两家医院),其中34名进行了蛋白质组学分析
835 2025-05-20
The Future of Parasomnias
2025-May-19, Journal of sleep research IF:3.4Q2
review 本文探讨了异态睡眠的未来发展,包括新型家庭诊断设备的开发、深度学习在异常多导睡眠图信号分类中的应用,以及大数据在预测神经退行性疾病风险中的作用 介绍了新型家庭诊断设备和深度学习在异态睡眠诊断中的应用,以及大数据在预测神经退行性疾病风险中的新信息 NA 探讨异态睡眠的诊断和治疗方法,以及相关神经退行性疾病的预测 异态睡眠患者,特别是REM睡眠行为障碍(RBD)和觉醒障碍(DOA)患者 医学 异态睡眠,神经退行性疾病 actigraphy, EEG headbands, 2D红外和3D飞行时间家庭摄像头,深度学习 深度学习 临床数据,认知数据,脑成像数据,DNA数据,多导睡眠图数据 NA
836 2025-05-20
DeepProtein: Deep Learning Library and Benchmark for Protein Sequence Learning
2025-May-19, Bioinformatics (Oxford, England)
research paper 本文介绍了DeepProtein,一个专为蛋白质相关任务设计的全面且用户友好的深度学习库 提出了DeepProtein库和基准测试,以及基于Prot-T5的DeepProt-T5模型,在多个蛋白质相关任务中实现了最先进的性能 NA 开发一个深度学习库和基准测试,以促进蛋白质科学中的深度学习应用 蛋白质序列和相关任务(如功能预测、亚细胞定位预测、蛋白质-蛋白质相互作用预测和结构预测) machine learning NA deep learning Prot-T5-based models protein sequences NA
837 2025-05-20
Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans
2025-May-17, European radiology IF:4.7Q1
research paper 开发一种深度学习算法,用于利用非对比CT扫描对蛛网膜下腔出血进行病因分类 使用ResNet变体的深度学习模型,首次在非对比CT扫描上实现了对蛛网膜下腔出血病因的高准确度分类 研究为回顾性设计,外部验证队列样本量较小(85例) 开发AI工具辅助急诊环境下蛛网膜下腔出血的快速病因诊断 618例蛛网膜下腔出血患者(305例动脉瘤性,228例非动脉瘤性) digital pathology cardiovascular disease NCCT扫描 ResNet + U-Net++ CT图像 618例患者(训练集533例,外部测试集85例)
838 2025-05-20
Development and validation of clinical-radiomics deep learning model based on MRI for endometrial cancer molecular subtypes classification
2025-May-16, Insights into imaging IF:4.1Q1
研究论文 开发和验证基于MRI的临床放射组学深度学习模型,用于子宫内膜癌分子亚型分类 结合临床数据和放射组学特征,利用深度学习模型(MoCo-v2)提升子宫内膜癌分子亚型分类的准确性 研究样本量有限(526例患者),未来需要更大数据集进一步验证模型的潜力 开发并验证一种基于MRI的临床放射组学深度学习模型,用于子宫内膜癌分子亚型分类 子宫内膜癌患者 数字病理 子宫内膜癌 MRI、放射组学特征提取、深度学习(MoCo-v2) 深度学习模型(MoCo-v2) MRI图像 526例子宫内膜癌患者
839 2025-05-20
Deep learning progressive distill for predicting clinical response to conversion therapy from preoperative CT images of advanced gastric cancer patients
2025-May-16, Scientific reports IF:3.8Q1
research paper 本研究开发并验证了一种基于术前CT图像的深度学习模型,用于预测晚期胃癌患者对转化治疗的临床反应 采用渐进式蒸馏(PD)方法构建深度学习模型,相比基线模型和知识蒸馏(KD)模型表现出更优的性能 需要进一步研究以评估该模型与临床病理参数结合的临床实用性 开发一种非侵入性筛查方法,以识别适合转化治疗的晚期胃癌患者 晚期胃癌患者 digital pathology gastric cancer CT imaging deep learning model (Progressive Distill) image 140名患者(训练集112名,测试集28名)
840 2025-05-20
Lightweight hybrid transformers-based dyslexia detection using cross-modality data
2025-May-16, Scientific reports IF:3.8Q1
研究论文 提出一种基于轻量级混合Transformer的跨模态数据阅读障碍检测模型 结合SWIN-Linformer、LeViT-Performer和GTNs进行多模态特征提取,并采用DXB分类器与BOHB优化算法提升性能 未说明模型在临床环境中的实际部署效果及跨种族/语言的泛化能力 通过多模态数据实现阅读障碍的早期精准诊断 阅读障碍患者的多模态数据(MRI、EEG、手写图像) 数字病理 神经系统疾病 MRI、EEG、量化感知训练、LIME可解释性分析 SWIN-Linformer+LeViT-Performer+GTNs混合Transformer 多模态数据(影像+信号+图像) 五个公共数据库(未注明具体样本量)
回到顶部