本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2025-07-14 |
Deep learning applications in orthopaedics: a systematic review and future directions
2025 May-Jun, Acta ortopedica mexicana
PMID:40645786
|
系统综述 | 本文综述了人工智能和深度学习在骨科中的应用,并探讨了未来的研究方向 | 分析了当前AI和深度学习工具在骨科领域的应用,识别了最常用的工具和方法 | 研究间异质性高,方法和术语差异大,可能导致对诊断准确性的高估 | 分析AI和深度学习在骨科风险、结果评估、影像学和基础科学领域的应用 | 骨科领域的影像评估、脊柱手术、结果评估、基础AI骨科教育和基础科学应用 | 数字病理 | 骨科疾病 | 深度学习 | CNN | 影像 | 595项研究(包括281项影像评估、102项脊柱手术、95项结果评估、84项基础AI骨科教育和33项基础科学应用) |
102 | 2025-07-13 |
Optimizing Locomotor Task Sets for Training a Biological Joint Moment Estimator
2025-May, IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
DOI:10.1109/ICORR66766.2025.11063074
PMID:40644131
|
研究论文 | 本文提出了一种优化运动任务集的策略,用于训练生物关节力矩估计器,以减少数据收集负担并保持模型性能 | 引入了一种运动任务集优化策略,通过聚类分析识别最小但具有代表性的任务集,显著减少数据收集需求 | 研究仅针对髋关节力矩估计,未验证其他关节的适用性 | 优化运动任务集以减少数据收集负担,同时保持生物关节力矩估计的准确性 | 穿戴式传感器数据和生物关节力矩估计 | 机器学习 | NA | 聚类分析 | 神经网络 | 传感器数据 | 未明确提及具体样本数量 |
103 | 2025-07-13 |
Simultaneous Recognition of Locomotion Mode, Phase, and Phase Progression Using Deep Learning Models
2025-May, IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
DOI:10.1109/ICORR66766.2025.11062982
PMID:40644172
|
research paper | 本研究提出了一种深度学习框架,用于同时识别运动模式、相位及相位进展,以提升步态辅助可穿戴机器人的实时辅助能力 | 首次提出同时预测运动模式、相位及相位进展的深度学习框架,解决了现有方法无法同时处理这三个关键因素的局限 | 研究仅涉及五名参与者,样本量较小,可能影响模型的泛化能力 | 开发一种有效的用户意图识别算法,使可穿戴机器人能够在各种运动活动中与用户协调运动 | 运动模式(如平地行走、上下楼梯、坐站转换)及其相位和相位进展 | machine learning | NA | 深度学习 | 深度学习模型 | IMU数据 | 5名参与者 |
104 | 2025-07-13 |
Exploring Cortical Responses to Blood Flow Restriction through Deep Learning
2025-May, IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
DOI:10.1109/ICORR66766.2025.11063023
PMID:40644184
|
研究论文 | 本研究利用深度学习和脑机接口技术探索血流限制训练对大脑皮层活动的影响 | 首次使用深度学习方法结合MEG技术分析血流限制训练对大脑皮层活动的个体化影响 | 跨被试模型仅达到随机水平准确率(33%),表明个体间存在显著差异 | 探索血流限制训练对大脑皮层活动的神经机制 | 6名受试者在血流限制训练前、中、后的大脑皮层活动 | 脑机接口 | NA | MEG(脑磁图), 深度学习 | BaseNet | 神经信号数据 | 6名受试者 |
105 | 2025-07-13 |
Personalization of Wearable Sensor-Based Joint Kinematics Estimation Using Computer Vision for Hip Exoskeleton Applications
2025-May, IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
DOI:10.1109/ICORR66766.2025.11063180
PMID:40644220
|
研究论文 | 本文提出了一种基于计算机视觉的深度学习适应框架,用于实时估计关节运动学,适用于髋部外骨骼应用 | 结合计算机视觉和深度学习,仅需少量数据(1-2个步态周期)即可适应新的步态模式,无需专业运动捕捉设备 | 在无法使用摄像头的场景下不可行 | 提高穿戴式传感器在关节运动学估计中的准确性和适应性 | 下肢关节运动学 | 计算机视觉 | NA | 深度学习 | TCN(时间卷积网络) | 视频(步态数据) | 少量数据(1-2个步态周期) |
106 | 2025-07-13 |
Position Based Camera-2D LiDAR Fusion and Person Following for Mobile Robots
2025-May, IEEE ... International Conference on Rehabilitation Robotics : [proceedings]
DOI:10.1109/ICORR66766.2025.11062955
PMID:40644251
|
research paper | 该研究提出了一种基于位置的相机-2D LiDAR融合方法,用于移动机器人的人体跟随应用 | 首次在真实机器人上测试基于位置的目标人物跟踪系统,并与基于图像的跟踪方法进行比较 | 未明确说明系统在复杂环境中的鲁棒性或计算效率 | 开发更适合人体跟随应用的目标人物跟踪系统 | 移动机器人的人体跟随系统 | 机器人技术 | NA | 多传感器融合(RGBD相机和LiDAR)、深度学习 | UCMCtrack算法、SORT算法 | 图像、LiDAR点云 | 未明确说明具体样本数量 |
107 | 2025-07-11 |
Identifying Asthma-Related Symptoms From Electronic Health Records Using a Hybrid Natural Language Processing Approach Within a Large Integrated Health Care System: Retrospective Study
2025-May-02, JMIR AI
DOI:10.2196/69132
PMID:40611521
|
研究论文 | 本研究开发了一种混合自然语言处理(NLP)算法,用于从大型综合医疗系统的临床记录中识别与哮喘相关的症状 | 结合基于规则和基于transformer的深度学习算法,开发了一种混合NLP方法,有效提高了从非结构化临床记录中识别哮喘相关症状的准确性 | 研究仅针对特定时间段内的临床记录进行分析,可能无法涵盖所有哮喘症状的表达方式 | 开发有效的NLP算法以识别哮喘相关症状,促进早期哮喘检测和恶化风险预测 | 大型综合医疗系统中的非结构化临床记录 | 自然语言处理 | 哮喘 | NLP, 深度学习 | 基于规则的算法, transformer-based算法 | 文本 | 11,374,552份临床记录,包含128,211,793个句子 |
108 | 2025-07-11 |
Learning-based early detection of post-hepatectomy liver failure using temporal perioperative data: a nationwide multicenter retrospective study in China
2025-May, EClinicalMedicine
IF:9.6Q1
DOI:10.1016/j.eclinm.2025.103220
PMID:40630620
|
研究论文 | 利用基于学习的方法和围手术期时间数据,实现肝切除术后肝功能衰竭的早期检测 | 采用前沿AI技术进行广泛的时间特征分析,将PHLF的检测提前至术后24小时内,并展示了在西方人群中的泛化潜力 | 在MIMIC-IV队列中,由于EHR数据不完整,模型性能有所下降 | 提高肝切除术后肝功能衰竭的早期检测能力 | 肝切除术后患者 | 数字病理 | 肝功能衰竭 | 深度学习 | Bio-Clinical Bidirectional Encoder Representation from Transformers | 电子健康记录(EHR) | 中国队列1832例患者(训练681例,验证1151例),MIMIC-IV队列242例患者 |
109 | 2025-07-10 |
Validity and accuracy of artificial intelligence-based dietary intake assessment methods: a systematic review
2025-May-14, The British journal of nutrition
DOI:10.1017/S0007114525000522
PMID:40207441
|
系统综述 | 本文系统综述了基于人工智能的膳食摄入评估方法的有效性和准确性 | 首次系统评估AI在膳食摄入评估中的应用效果,填补了营养流行病学研究中的技术空白 | 纳入研究样本量有限(13项研究),61.5%存在中等偏倚风险,需要更多人群比较研究和更大样本量验证 | 评估人工智能技术在膳食摄入评估领域的应用效果 | 营养流行病学研究中的膳食数据 | 机器学习 | NA | 深度学习(46.2%),机器学习(15.3%) | NA | 膳食摄入数据 | 13项符合条件的研究(其中61.5%为临床前研究) |
110 | 2025-07-10 |
Challenges in AI-driven Biomedical Multimodal Data Fusion and Analysis
2025-May-10, Genomics, proteomics & bioinformatics
DOI:10.1093/gpbjnl/qzaf011
PMID:40036568
|
综述 | 本文综述了AI在生物医学多模态数据融合与分析中的挑战与应用 | 全面概述了生物医学多模态数据的表示学习方法及AI在数据整合分析中的应用,并提出了未来研究方向 | 未提及具体实验验证或案例研究 | 探讨AI技术在生物医学多模态数据整合分析中的应用及其挑战 | 分子、细胞、图像和电子健康记录等多模态生物医学数据 | 机器学习 | NA | 深度学习 | 大语言模型和视觉模型 | 多模态数据(分子、细胞、图像和电子健康记录) | NA |
111 | 2025-07-10 |
A new multimodal medical image fusion framework using Convolution Neural Networks
2025-May, Journal of medical engineering & technology
DOI:10.1080/03091902.2025.2488827
PMID:40214199
|
研究论文 | 提出了一种基于卷积神经网络的多模态医学图像融合新框架 | 优化了卷积层数量并选择了适当的激活函数,采用三层卷积层和swish激活函数提取输入图像的显著特征 | 未提及具体医学图像类型的适用性限制 | 开发更高效的医学图像融合方法以减少医学诊断时间 | 多模态医学图像 | 数字病理 | NA | 深度学习 | CNN | 图像 | 未提及具体样本数量 |
112 | 2025-07-10 |
Deep ensemble architecture with improved segmentation model for Alzheimer's disease detection
2025-May, Journal of medical engineering & technology
DOI:10.1080/03091902.2025.2484691
PMID:40219912
|
research paper | 提出了一种用于阿尔茨海默病检测的深度集成架构,通过改进的分割模型提高检测准确性 | 提出了一种新型深度集成架构En-LeCILSTM,结合了LeNet、CNN和改进的LSTM模型,并通过改进的U-Net架构进行图像分割 | 未提及具体的数据集大小或多样性限制,可能影响模型的泛化能力 | 提高阿尔茨海默病的检测准确性和效率 | 阿尔茨海默病的医学图像数据 | digital pathology | geriatric disease | Median filtering, Improved U-Net, ISIH, MBP, Multi Texton | En-LeCILSTM (LeNet, CNN, improved LSTM) | image | NA |
113 | 2025-07-06 |
Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study
2025-May-01, JMIR AI
DOI:10.2196/67356
PMID:40605794
|
研究论文 | 开发并验证了一种多模态深度学习框架,用于压力性溃疡(PUs)和失禁性皮炎(IAD)的精细分类 | 提出了一种结合伤口图像和分类患者数据的多模态深度学习框架,显著提高了PUs和IAD的分类准确性,并在某些任务上超越了人类专家 | 细粒度分类性能仍有提升空间,特别是IAD分类的F1-score较低(53.20%),且需要进一步验证实际临床应用效果 | 开发一个强大的多模态深度学习框架,以提高PUs和IAD的诊断准确性并支持临床决策 | 压力性溃疡(PUs)和失禁性皮炎(IAD)的伤口图像及其严重程度分类 | 数字病理 | 皮肤疾病 | 深度学习 | CNN, Transformer (TinyViT, ConvNeXtV2) | 图像, 分类数据 | 1555张伤口图像,由4位伤口专家标注 |
114 | 2025-07-05 |
Single-shot reconstruction of three-dimensional morphology of biological cells in digital holographic microscopy using a physics-driven neural network
2025-May-24, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-60200-x
PMID:40413181
|
research paper | 提出了一种名为MorpHoloNet的深度学习模型,用于从单次拍摄的全息图中重建生物细胞的三维形态 | 通过整合物理驱动和基于坐标的神经网络,MorpHoloNet能够直接从单次拍摄的全息图中重建三维复杂光场和三维形态,无需多次相移全息图或角度扫描 | NA | 改进数字同轴全息显微镜(DIHM)中生物细胞的三维形态重建技术 | 生物细胞 | digital pathology | NA | digital in-line holographic microscopy (DIHM) | physics-driven neural network, coordinate-based neural network | holograms | NA |
115 | 2025-07-05 |
Relevance of choroid plexus volumes in multiple sclerosis
2025-May-08, Fluids and barriers of the CNS
IF:5.9Q1
DOI:10.1186/s12987-025-00656-7
PMID:40340923
|
研究论文 | 本研究探讨了脉络丛体积在多发性硬化症(MS)中的相关性及其与脑室周围组织损伤的关系 | 使用新型深度学习分割方法评估脉络丛体积,并揭示了其在复发缓解型多发性硬化症(RRMS)和原发性进展型多发性硬化症(PPMS)中的不同表现 | 研究为横断面设计,无法确定因果关系;样本量相对有限 | 阐明脉络丛在多发性硬化症神经炎症中的作用及其与脑室周围组织损伤的关系 | 复发缓解型多发性硬化症(RRMS)和原发性进展型多发性硬化症(PPMS)患者及健康对照 | 数字病理学 | 多发性硬化症 | 结构MRI和深度学习分割方法 | 深度学习 | MRI图像 | 141名RRMS患者、64名PPMS患者和75名健康对照 |
116 | 2025-07-05 |
Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review
2025-May-07, BMC medical imaging
IF:2.9Q2
DOI:10.1186/s12880-025-01701-5
PMID:40335965
|
综述 | 本文探讨了深度学习在医学X射线、MRI和超声图像分类任务中的应用 | 总结了深度学习模型在医学图像分类中的使用情况、达到的准确率以及模型架构的细节 | 讨论了当前方法的局限性并提出了医学图像分类的未来方向 | 探索深度学习如何用于分类通过X射线、MRI或超声图像诊断的各种疾病 | 医学X射线、MRI和超声图像 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
117 | 2025-07-05 |
Using interpretable deep learning radiomics model to diagnose and predict progression of early AD disease spectrum: a preliminary [18F]FDG PET study
2025-May, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11158-9
PMID:39477837
|
研究论文 | 本研究提出了一种基于[18F]FDG PET图像的可解释深度学习放射组学(IDLR)模型,用于诊断阿尔茨海默病(AD)的临床谱系并预测从轻度认知障碍(MCI)到AD的进展 | 提出的IDLR模型结合了放射组学和深度学习特征,增强了传统深度学习模型的可解释性,并提高了分类准确性 | 研究为初步结果,需要进一步验证 | 诊断阿尔茨海默病的临床谱系并预测从轻度认知障碍到AD的进展 | 1962名来自不同种族的受试者(包括ADNI的高加索人群和中国两家医院的亚洲人群) | 数字病理学 | 阿尔茨海默病 | [18F]FDG PET成像 | 可解释深度学习放射组学(IDLR)模型 | 图像 | 1962名受试者(高加索和亚洲人群) |
118 | 2025-07-04 |
Toward diffusion MRI in the diagnosis and treatment of pancreatic cancer
2025-May-28, Medical oncology (Northwood, London, England)
DOI:10.1007/s12032-025-02759-5
PMID:40434720
|
研究论文 | 探讨扩散磁共振成像(dMRI)在胰腺癌诊断和治疗中的潜力 | 结合扩散加权成像(DWI)、扩散张量成像(DTI)、体素内不相干运动(IVIM)和扩散峰度成像(DKI)等扩散技术及AI分析,提供组织微结构的深入洞察 | 标准化协议和稳健的数据分析流程仍存在挑战 | 增强胰腺癌的诊断和治疗效果 | 胰腺癌 | 数字病理 | 胰腺癌 | dMRI, DWI, DTI, IVIM, DKI, AI分析 | 深度学习 | MRI图像 | NA |
119 | 2025-07-04 |
Galileo-an Artificial Intelligence tool for evaluating pre-implantation kidney biopsies
2025-May, Journal of nephrology
IF:2.7Q2
DOI:10.1007/s40620-024-02094-4
PMID:39356416
|
研究论文 | 介绍了一种名为Galileo的人工智能工具,用于评估移植前肾脏活检 | 开发了专门用于辅助病理学家解读移植前肾脏活检的AI工具Galileo,显著提高了评估速度和一致性 | 需要进一步基于硬终点(如移植物存活率)进行改进 | 开发AI工具以辅助病理学家评估移植前肾脏活检 | 移植前肾脏活检的病理图像 | 数字病理 | 肾脏疾病 | 深度学习 | 深度学习算法 | 图像 | 多中心收集的肾脏穿刺和楔形活检的全切片图像 |
120 | 2025-07-04 |
TransMA: an explainable multi-modal deep learning model for predicting properties of ionizable lipid nanoparticles in mRNA delivery
2025-May-01, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf307
PMID:40581984
|
研究论文 | 提出了一种名为TransMA的可解释多模态深度学习模型,用于预测mRNA递送中可电离脂质纳米颗粒(LNPs)的转染效率 | TransMA采用多模态分子结构融合架构,结合细粒度原子空间关系提取器和粗粒度原子序列提取器,设计了mol-attention机制块,能够对齐粗细粒度原子特征并捕捉原子空间与序列结构间的关系 | 未明确提及具体局限性 | 加速高转染效率mRNA药物递送系统的筛选过程 | 可电离脂质纳米颗粒(LNPs) | 机器学习 | NA | 深度学习 | Transformer, Mamba | 分子结构数据 | 当前最大的LNPs数据集,包括Hela和RAW细胞系 |