深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202505-202505] [清除筛选条件]
当前共找到 1600 篇文献,本页显示第 1541 - 1560 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1541 2025-04-18
Performance of Two Deep Learning-based AI Models for Breast Cancer Detection and Localization on Screening Mammograms from BreastScreen Norway
2025-May, Radiology. Artificial intelligence
research paper 评估两种基于深度学习的AI模型在乳腺癌筛查中的检测和定位性能 比较了商业可用和内部开发的两种AI模型在乳腺癌筛查中的表现,并评估了它们的定位准确性 研究为回顾性分析,可能无法完全反映前瞻性应用中的表现 评估AI模型在乳腺癌筛查中的检测和定位准确性 129,434例乳腺筛查检查(全部为女性患者,平均年龄59.2岁) digital pathology breast cancer mammography deep learning-based AI models image 129,434例乳腺筛查检查
1542 2025-04-18
The Evolution of Artificial Intelligence in Nuclear Medicine
2025-May, Seminars in nuclear medicine IF:4.6Q1
review 本文综述了人工智能在核医学中的演变及其在诊断、治疗和图像处理中的应用 探讨了人工智能在核医学中的最新进展,包括深度学习、生成式AI及其在个性化治疗中的应用 数据稀缺性、异质性以及伦理问题是临床转化的主要障碍 研究人工智能在核医学中的应用及其对诊断和治疗效果的优化 核医学中的诊断、预后、分割、图像质量增强和治疗诊断学 machine learning NA machine learning, deep learning, generative AI CNN, transformer-based neural networks, large language models, diffusion techniques image, text NA
1543 2025-04-18
Machine Learning and Deep Learning Models for Automated Protocoling of Emergency Brain MRI Using Text from Clinical Referrals
2025-May, Radiology. Artificial intelligence
研究论文 开发并评估基于机器学习和深度学习的模型,用于根据临床转诊文本自动制定急诊脑MRI扫描方案 首次使用Finnish BERT和GPT-3.5 Turbo等预训练深度学习模型进行急诊脑MRI方案的自动制定 单中心回顾性研究,样本量有限(1953例) 通过自然语言处理技术实现急诊脑MRI扫描方案的自动化制定 急诊脑MRI转诊文本 自然语言处理 神经系统疾病 自然语言处理 BERT, GPT-3.5, 朴素贝叶斯, 支持向量机, XGBoost 文本 1953例急诊脑MRI转诊
1544 2025-04-18
Deep Learning-based Aligned Strain from Cine Cardiac MRI for Detection of Fibrotic Myocardial Tissue in Patients with Duchenne Muscular Dystrophy
2025-May, Radiology. Artificial intelligence
研究论文 开发一种基于深度学习的模型,从非对比心脏MRI中获取对齐应变值,用于预测杜氏肌营养不良症患者的心肌纤维化 提出了一种新的对齐应变技术,能够更准确地检测心肌功能障碍,并在非对比心脏MRI中实现患者间应变分析的详细比较 研究为回顾性单中心研究,样本量有限(139例患者) 开发并评估一种深度学习模型,用于预测杜氏肌营养不良症患者的心肌纤维化 杜氏肌营养不良症患者 数字病理学 杜氏肌营养不良症 心脏MRI CNN 图像 139例男性杜氏肌营养不良症患者
1545 2025-04-18
AI in Breast Cancer Imaging: An Update and Future Trends
2025-May, Seminars in nuclear medicine IF:4.6Q1
review 本文回顾了人工智能在乳腺癌影像学中的最新应用和未来趋势 探讨了AI在乳腺癌影像学中的多种应用,包括病灶检测与分类、风险分层、分子亚型分析等,并展示了与放射科医生相当或更优的性能 需要数据标准化、大规模标注的多模态数据集和广泛的前瞻性临床试验来验证深度学习的临床效用,并解决法律和伦理问题 探讨人工智能在乳腺癌影像学中的应用及其未来发展趋势 乳腺癌影像学数据 digital pathology breast cancer mammography, digital breast tomosynthesis, ultrasound, magnetic resonance imaging, nuclear medicines techniques foundation models, self-supervised learning, federated learning image NA
1546 2025-04-18
The Role of AI in the Evaluation of Neuroendocrine Tumors: Current State of the Art
2025-May, Seminars in nuclear medicine IF:4.6Q1
review 本文综述了AI在神经内分泌肿瘤评估中的当前和新兴应用,特别是在影像工作流程、诊断、预后建模和治疗计划中的整合 利用先进的放射组学和深度学习技术,AI驱动的应用在肿瘤检测、分类和分级方面展现出潜力 未提及具体的技术实施细节或临床验证结果 探讨AI在神经内分泌肿瘤评估中的作用及其对临床工作流程的改进 神经内分泌肿瘤 digital pathology neuroendocrine neoplasms radiomics, deep learning NA image NA
1547 2025-04-18
Optimizing CT Imaging Parameters: Implications for Diagnostic Accuracy in Nuclear Medicine
2025-May, Seminars in nuclear medicine IF:4.6Q1
综述 本文综述了CT成像参数优化对核医学诊断准确性的影响,并探讨了实施稳健CT协议审查流程的方法 评估了迭代重建(IR)和深度学习(DL)在提升图像质量和减少辐射剂量方面的潜力 未提及具体实验数据或案例研究来支持提出的优化方法 优化CT成像参数以提高核医学诊断准确性 CT成像参数及其对核医学诊断的影响 数字病理 NA CT, SPECT, PET, IR, DL NA 医学影像 NA
1548 2025-04-18
U-Net-Based Prediction of Cerebrospinal Fluid Distribution and Ventricular Reflux Grading
2025-May, NMR in biomedicine IF:2.7Q1
研究论文 本研究探讨了深度学习在预测人类脑脊液分布中的应用,并提出了一种基于U-net的监督学习模型 首次使用U-net模型预测脑脊液对比剂的分布,并验证了仅使用注射后2小时的成像数据即可获得与使用更多时间点数据相当的预测效果 研究仅基于T1加权MRI扫描,未考虑其他成像方式或更大样本量的验证 探索深度学习在预测脑脊液分布中的潜力,以提高临床分析的效率并降低医疗成本 人类脑脊液分布及脑室反流分级 数字病理学 中枢神经系统疾病 T1加权磁共振成像(MRI) U-net 图像 NA
1549 2025-04-18
Beyond Double Reading: Multiple Deep Learning Models Enhancing Radiologist-led Breast Screening
2025-May, Radiology. Artificial intelligence
NA NA NA NA NA NA NA NA NA NA NA NA
1550 2025-04-17
HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder
2025-May, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 提出了一种基于混合卷积双向长短期记忆和水优化算法的自闭症谱系障碍检测机制 结合了HCBiLSTM和WOA算法,提高了自闭症谱系障碍的预测准确率 数据隐私和自闭症风险因素的不可预测性带来了伦理考量 提高自闭症谱系障碍的早期检测准确率 自闭症谱系障碍患者(包括幼儿、儿童、青少年和成人) 机器学习 自闭症谱系障碍 混合卷积双向长短期记忆(HCBiLSTM)和水优化算法(WOA) HCBiLSTM-WOA 实时自闭症谱系障碍数据集 包含自闭症和非自闭症数据的幼儿、儿童、青少年和成人样本
1551 2025-04-17
Machine learning and deep learning models for preoperative detection of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis
2025-May, Abdominal radiology (New York)
meta-analysis 评估机器学习和深度学习模型在结直肠癌患者术前淋巴结转移预测中的诊断性能 首次系统评价和荟萃分析ML和DL模型在CRC术前LNM预测中的表现,并与放射科医生的表现进行比较 研究间存在高异质性,缺乏外部验证的研究表现出更高的AUC,需要更多前瞻性多中心研究验证 评估ML和DL模型在CRC术前LNM预测中的诊断性能 结直肠癌患者 machine learning colorectal cancer NA ML和DL模型 NA 12项研究,涉及8321名患者
1552 2025-04-17
Deep Learning-Based Heterogeneity Correction of the Homogeneous Dose Distribution for Single Brain Tumors in Gamma Knife Radiosurgery
2025-May, Advances in radiation oncology IF:2.2Q2
research paper 本研究开发了一种基于深度学习的异质性校正方法,用于伽玛刀放射外科治疗中单发脑肿瘤的均匀剂量分布 使用条件生成对抗网络(cGAN)将TMR10剂量转换为合成卷积剂量,无需额外CT扫描即可实现异质性校正 需要进一步优化和验证以增强其在临床环境中的适用性和影响力 开发一种在伽玛刀放射外科治疗中生成包含异质性效应的合成剂量计划的方法 122名伽玛刀放射外科患者(100名回顾性收集,22名前瞻性收集) digital pathology brain tumor MRI, CT, TMR10-based, convolution-based dose calculations conditional Generative Adversarial Network (cGAN) image 122名患者(100名回顾性,22名前瞻性)
1553 2025-04-17
Multimodal sentiment analysis leveraging the strength of deep neural networks enhanced by the XGBoost classifier
2025-May, Computer methods in biomechanics and biomedical engineering IF:1.7Q3
研究论文 本文提出了一种名为Hybrid LXGB的新型多模态情感分析模型,结合了LSTM和XGBoost分类器的优势 创新性地结合了LSTM和XGBoost分类器,提出了Hybrid LXGB模型,在CMU-MOSEI数据集上达到了97.18%的准确率 NA 解决跨多种数据源(如文本、图像和音频)理解情感的复杂任务 多模态情感分析 自然语言处理, 机器学习 NA 深度学习, 梯度提升 LSTM, XGBoost, Hybrid LXGB 文本, 图像, 音频 CMU-MOSEI数据集
1554 2025-04-15
MSTNet: Multi-scale spatial-aware transformer with multi-instance learning for diabetic retinopathy classification
2025-May, Medical image analysis IF:10.7Q1
research paper 提出了一种名为MSTNet的新型多尺度空间感知Transformer网络,用于糖尿病视网膜病变分类 MSTNet通过多尺度图像块编码信息,构建双路径主干网络,结合空间感知模块和多实例学习策略,有效捕捉局部细节和全局上下文,提升对细微病变区域的关联性 未明确提及具体局限性 提高糖尿病视网膜病变的分类准确率 糖尿病视网膜病变患者的眼底图像 computer vision diabetic retinopathy Multiple Instance Learning (MIL) Transformer image 四个公共DR数据集(APTOS2019、RFMiD2020、Messidor和IDRiD)
1555 2025-04-15
Deep learning based coronary vessels segmentation in X-ray angiography using temporal information
2025-May, Medical image analysis IF:10.7Q1
research paper 提出了一种基于深度学习的冠状动脉血管分割方法TVS-Net,利用时间信息在X射线血管造影中进行血管分割 提出了一种新颖的密集连接3D编码器-2D解码器结构,结合基于弹性交互的损失函数,融合了连续的ICA信息 使用了相对宽松的标注协议,生成了粗粒度的样本,可能影响分割精度 提高冠状动脉血管在ICA中的分割准确性,以辅助诊断和治疗计划制定 冠状动脉血管 computer vision cardiovascular disease 深度学习 TVS-Net(密集连接3D编码器-2D解码器结构) X射线血管造影图像 323个ICA样本(173训练,82验证,68测试),外加60张本地医院图像用于外部评估
1556 2025-04-15
Motor imagery EEG decoding based on TS-former for spinal cord injury patients
2025-May, Brain research bulletin IF:3.5Q2
研究论文 提出一种基于Transformer的迁移学习方法TS-former,用于脊髓损伤患者的运动想象脑电信号解码 结合FBCSP和Transformer构建新型时空域特征提取网络,采用迁移学习实现跨任务适应 未说明模型在更大人群或不同病理条件下的泛化能力 开发高效脑机接口系统用于脊髓损伤患者康复训练 16名脊髓损伤患者的运动想象脑电信号 脑机接口 脊髓损伤 Filter Bank Common Spatial Pattern (FBCSP), Transformer TS-former (基于Transformer的混合架构) EEG信号 16名患者数据(十折交叉验证)
1557 2025-04-15
UniSAL: Unified Semi-supervised Active Learning for histopathological image classification
2025-May, Medical image analysis IF:10.7Q1
research paper 提出了一种统一的半监督主动学习框架(UniSAL),用于高效选择信息丰富且具有代表性的组织病理学图像进行标注 引入双视角高置信度伪训练和伪标签引导的类对比学习,以及设计新颖的不确定性和代表性样本选择策略 未提及具体局限性 减少标注成本并提高组织病理学图像分类的效率 组织病理学图像 digital pathology cancer deep learning dual-view networks image CRC5000, Chaoyang和CRC100K三个公共病理图像分类数据集
1558 2025-04-15
Predicting infant brain connectivity with federated multi-trajectory GNNs using scarce data
2025-May, Medical image analysis IF:10.7Q1
research paper 该论文提出了一种名为FedGmTE-Net++的联邦图多轨迹演化网络,用于在数据稀缺环境下预测婴儿大脑连接的多轨迹演化 首次设计了专门用于大脑多轨迹演化预测的联邦学习框架,在局部目标函数中加入了辅助正则化器以利用所有纵向大脑连接数据,并引入了一个两步插补过程 需要依赖多个医院的数据合作,可能面临数据协调和隐私保护的挑战 预测婴儿出生后第一年大脑连接网络的多轨迹演化 婴儿大脑连接网络 digital pathology NA federated learning, GNN FedGmTE-Net++ (基于GNN的联邦学习模型) graph data (大脑连接网络) 来自多家医院的有限数据集
1559 2025-04-15
A deep learning approach to multi-fiber parameter estimation and uncertainty quantification in diffusion MRI
2025-May, Medical image analysis IF:10.7Q1
研究论文 本文提出了一种基于深度学习的多纤维参数估计和不确定性量化方法,用于扩散MRI中的脑微结构研究 引入了一种新颖的顺序方法,将多纤维参数推断任务分解为一系列可管理的子问题,并使用针对特定问题和对称性定制的深度神经网络进行求解 方法在HCP类采集方案下,对细胞外平行扩散率的估计具有高度不确定性 开发一种可靠且计算效率高的参数推断方法,用于常见的dMRI生物物理模型 脑微结构中的白质纤维群体 医学影像分析 NA 扩散MRI (dMRI) 深度神经网络 医学影像数据 Human Connectome Project (HCP) 的成像数据
1560 2025-04-15
Segment Like A Doctor: Learning reliable clinical thinking and experience for pancreas and pancreatic cancer segmentation
2025-May, Medical image analysis IF:10.7Q1
研究论文 提出了一种名为SLAD的新框架,通过学习医生的临床思维和经验,提高胰腺和胰腺癌在CT图像上的分割准确性 首次模拟医生在胰腺癌诊断过程中的逻辑思维和经验,包括器官、病变和边界三个阶段,并设计了相应的模块(AMAE、CGRM和DDCM)来实现这一目标 未提及具体的数据集规模限制或模型在其他类型癌症上的泛化能力 提高胰腺和胰腺癌在CT图像上的分割准确性,以满足临床需求 胰腺和胰腺癌的CT图像 数字病理 胰腺癌 CT图像分析 AMAE、CGRM、DDCM 图像 三个独立数据集(未提及具体样本数量)
回到顶部