本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
241 | 2025-04-24 |
Corrigendum to: Pollen analysis using multispectral imaging flow cytometry and deep learning
2025-Jun, The New phytologist
DOI:10.1111/nph.70163
PMID:40263692
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
242 | 2025-05-23 |
Diagnosis of carpal tunnel syndrome using deep learning with comparative guidance
2025-Jun, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
IF:3.7Q2
DOI:10.1016/j.clinph.2025.03.038
PMID:40300239
|
研究论文 | 本研究开发了一种基于深度学习的模型,用于通过比较分类方法对腕管综合征(CTS)进行稳健诊断 | 提出了基于余弦相似度的比较引导方法,使模型能够自动识别超声图像中异常回声纹理差异 | 样本量相对较小(152名参与者),且仅使用超声图像数据 | 开发一种能够自动识别CTS重要特征的深度学习模型 | 腕管综合征患者和健康个体的超声图像 | 数字病理学 | 腕管综合征 | 超声成像 | 深度学习模型(具体架构未提及) | 超声图像 | 152名参与者(包括不同严重程度的CTS患者和健康个体) |
243 | 2025-05-23 |
Recent trends in diabetes mellitus diagnosis: an in-depth review of artificial intelligence-based techniques
2025-Jun, Diabetes research and clinical practice
IF:6.1Q1
DOI:10.1016/j.diabres.2025.112221
PMID:40328407
|
综述 | 本文综述了人工智能(AI)在糖尿病诊断中的最新进展,重点关注机器学习和深度学习的应用 | 探讨了AI驱动诊断工具的最新突破方法及其在临床实践中的实际应用 | 讨论了模型可解释性、伦理考虑和实际实施中的挑战 | 提高糖尿病的诊断准确性并支持AI技术在临床实践中的整合 | 糖尿病 | 机器学习 | 糖尿病 | 机器学习和深度学习 | NA | NA | NA |
244 | 2025-05-23 |
Parkinson's disease detection using inceptionV3: A Deep learning approach
2025-Jun, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2025.103333
PMID:40395929
|
研究论文 | 本研究使用深度学习算法对帕金森病患者绘制的螺旋图像进行分类,作为一种低成本诊断技术 | 利用四种CNN架构(DenseNet121、InceptionV3、VGG16和LeNet)进行螺旋图像分类,并通过迁移学习提高模型性能 | 未来研究可结合螺旋图像与其他生物标志物或更广泛的运动测量数据进行更全面的疾病评估 | 开发一种非侵入性、高效且自动化的帕金森病早期检测方法 | 帕金森病患者和健康个体绘制的螺旋图像 | 计算机视觉 | 帕金森病 | 深度学习 | CNN(包括DenseNet121、InceptionV3、VGG16和LeNet) | 图像 | NA |
245 | 2025-05-23 |
Deep learning-based technique for investigating the behavior of MEMS systems with multiwalled carbon nanotubes and electrically actuated microbeams
2025-Jun, MethodsX
IF:1.6Q2
DOI:10.1016/j.mex.2025.103337
PMID:40395931
|
研究论文 | 本文提出了一种基于深度学习的模型,用于研究带有碳纳米管和电驱动微梁的MEMS系统的行为 | 开发了一种新颖的基于DNN的模型来解决MEMS中的非线性系统,特别是针对带有MWCNTs的振荡器 | 由于系统的刚度、参数敏感性和非线性,预测这些系统的行为具有挑战性 | 研究MEMS振荡器的非线性振动特性,特别是与纳米管和电驱动微梁相关的特性 | 双端固定的电驱动微梁和多壁碳纳米管(MWCNTs) | 机器学习 | NA | 深度神经网络(DNN) | DNN | 数值模拟数据 | NA |
246 | 2025-05-22 |
Current Status, Hotspots, and Prospects of Artificial Intelligence in Ophthalmology: A Bibliometric Analysis (2003-2023)
2025-Jun, Ophthalmic epidemiology
IF:1.7Q3
DOI:10.1080/09286586.2024.2373956
PMID:39146462
|
综述 | 本文通过文献计量学方法分析了2003-2023年间人工智能在眼科领域的研究现状、热点及未来趋势 | 采用VOSviewer、CiteSpace和R包Bibliometrix进行文献计量分析,系统梳理了AI在眼科领域的发展脉络和研究热点 | 仅基于Web of Science数据库的文献,可能未涵盖所有相关研究;未深入探讨技术、监管和伦理等具体挑战 | 总结人工智能在眼科领域的研究现状并展望未来发展方向 | 3377篇来自98个国家4035个机构的眼科AI研究文献 | 数字病理 | 眼科疾病 | 文献计量分析 | GAN, ChatGPT | 文献数据 | 3377篇文献,涉及1345位研究人员 |
247 | 2025-05-22 |
DRBP-EDP: classification of DNA-binding proteins and RNA-binding proteins using ESM-2 and dual-path neural network
2025-Jun, NAR genomics and bioinformatics
IF:4.0Q1
DOI:10.1093/nargab/lqaf058
PMID:40391089
|
研究论文 | 本研究提出了一种名为DRBP-EDP的分阶段分类方法,结合ESM-2和双路径神经网络,用于分类DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) | 整合ESM-2与双路径神经网络进行蛋白质分类,并设计了高质量数据集构建方法 | 未明确提及具体限制 | 开发高效准确的DNA结合蛋白和RNA结合蛋白分类方法 | DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) | 生物信息学 | NA | 深度学习 | 双路径神经网络 | 蛋白质序列数据 | 未明确提及具体样本数量 |
248 | 2025-05-21 |
Optimizing Skin Cancer Diagnosis: A Modified Ensemble Convolutional Neural Network for Classification
2025-Jun, Microscopy research and technique
IF:2.0Q3
DOI:10.1002/jemt.24792
PMID:39888306
|
研究论文 | 本研究提出了一种结合随机猫群优化算法和集成卷积神经网络的RCS-ECNN方法,用于皮肤癌不同阶段的分类 | 提出了结合随机猫群优化(CSO)与集成卷积神经网络(ECNN)的RCS-ECNN方法,用于优化皮肤癌分类 | 未提及方法在临床环境中的实际应用效果或泛化能力 | 优化皮肤癌诊断,提高分类准确率 | 皮肤癌的不同阶段 | 计算机视觉 | 皮肤癌 | 随机猫群优化(CSO),GrabCut算法 | 集成卷积神经网络(ECNN),深度神经网络(DNN),Keras DNN(KDNN) | 图像 | HAM10000和ISIC数据集 |
249 | 2025-02-20 |
Letter to the Editor: "A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia"
2025-Jun, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345251317097
PMID:39966688
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
250 | 2025-04-25 |
Response to the Letter to the Editor: "A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia"
2025-Jun, Journal of dental research
IF:5.7Q1
DOI:10.1177/00220345251329356
PMID:40269482
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
251 | 2025-05-21 |
Accuracy of an Automated Bone Scan Index Measurement System Enhanced by Deep Learning of the Female Skeletal Structure in Patients with Breast Cancer
2025-Jun, Nuclear medicine and molecular imaging
IF:1.3Q3
DOI:10.1007/s13139-025-00905-5
PMID:40385368
|
research paper | 该研究验证了通过深度学习女性骨骼结构更新的VSBONE® BSI系统在乳腺癌患者中的诊断准确性 | VSBONE ver.3通过深度学习957名女性的骨骼结构,提高了在乳腺癌患者中的诊断准确性 | 研究样本量较小,仅包括220名日本乳腺癌患者 | 验证更新的VSBONE系统在乳腺癌患者中的诊断准确性 | 乳腺癌患者 | digital pathology | breast cancer | bone scintigraphy with SPECT/CT | deep learning | image | 220名日本乳腺癌患者(20名有活动性骨转移,200名无骨转移) |
252 | 2025-05-21 |
Classification of differentially activated groups of fibroblasts using morphodynamic and motile features
2025-Jun, APL bioengineering
IF:6.6Q1
DOI:10.1063/5.0250502
PMID:40385989
|
research paper | 该研究提出了一种基于人工智能的分类框架,通过分析成纤维细胞的形态动力学和运动特征来识别和表征不同激活状态的成纤维细胞 | 利用形态动力学和运动特征作为成纤维细胞激活状态的生物物理标志物,克服了传统分子标记的局限性 | 研究仅基于与乳腺癌细胞系共培养的成纤维细胞数据,可能无法完全代表体内复杂微环境 | 开发新型成纤维细胞分类方法以更好地理解肿瘤微环境 | 与乳腺癌细胞系共培养的成纤维细胞 | digital pathology | breast cancer | label-free live-cell imaging | deep learning and machine learning algorithms | image | NA |
253 | 2025-05-21 |
Gluten identification from food images using advanced deep learning and transfer learning methods
2025-Jun, Journal of food science and technology
DOI:10.1007/s13197-024-06158-y
PMID:40386197
|
research paper | 本文提出了一种基于深度学习和迁移学习的创新方法,用于从食物图像中识别麸质,旨在帮助乳糜泻患者识别含麸质食物 | 利用EfficientNet预训练模型进行麸质图像分类,在食物图像识别领域具有创新性 | 研究仅基于Food101数据集的子集,可能无法涵盖所有食物类型 | 开发一种辅助乳糜泻患者识别含麸质食物的工具 | 食物图像 | computer vision | celiac disease | deep learning, transfer learning | CNN, EfficientNet | image | 20,000张训练图像和2,000张测试图像 |
254 | 2025-05-20 |
A review of multimodal fusion-based deep learning for Alzheimer's disease
2025-Jun-07, Neuroscience
IF:2.9Q2
|
review | 本文综述了基于深度学习的多模态融合在阿尔茨海默病研究中的最新进展 | 系统总结了MRI和PET多模态数据融合的深度学习方法及其在阿尔茨海默病研究中的应用 | 面临数据稀缺和不平衡、机构间数据异质性等关键挑战 | 推动阿尔茨海默病早期诊断和干预策略的发展 | 阿尔茨海默病相关的MRI和PET多模态影像数据 | digital pathology | geriatric disease | MRI, PET | deep learning models | image | NA |
255 | 2025-05-20 |
Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: A critical review of current literature
2025-Jun, Urologic oncology
DOI:10.1016/j.urolonc.2024.08.014
PMID:39304391
|
综述 | 本文全面评估并批判性地评价了当前用于非转移性肾细胞癌(nmRCC)肾切除术后预后预测的模型 | 讨论了人工智能(AI)尤其是机器学习和深度学习算法在生存预测模型中的应用 | AI模型的广泛应用受到外部验证有限、成本效益分析缺乏和临床效用未确认的限制 | 评估和批判当前用于nmRCC肾切除术后预后预测的模型 | 非转移性肾细胞癌(nmRCC)患者 | 数字病理学 | 肾癌 | 机器学习和深度学习算法 | NA | 临床、病理、基因组和分子数据 | NA |
256 | 2025-05-20 |
Comprehensive Morphometric Analysis to Identify Key Neuroimaging Biomarkers for the Diagnosis of Adult Hydrocephalus Using Artificial Intelligence
2025-Jun-01, Neurosurgery
IF:3.9Q1
DOI:10.1227/neu.0000000000003248
PMID:39508594
|
研究论文 | 本研究通过人工智能技术识别用于诊断成人脑积水的关键神经影像生物标志物,旨在开发实用且准确的诊断工具 | 利用SHAP特征重要性分析确定了关键的一维形态测量生物标志物,这些标志物易于测量且能提供与体积测量相似的分类性能 | 研究样本量较小,且仅针对非正常压力脑积水患者和健康受试者 | 开发实用且准确的诊断工具,帮助神经外科医生早期和准确诊断脑积水 | 成人非正常压力脑积水患者和健康受试者 | 数字病理 | 脑积水 | 人工图像处理,机器学习分类器 | Gradient Boosting, 机器学习和深度学习分类器 | 神经影像数据 | 未明确提及具体样本数量,仅提到涉及非正常压力脑积水患者和健康受试者 |
257 | 2025-05-20 |
AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B
2025-Jun, Journal of hepatology
IF:26.8Q1
DOI:10.1016/j.jhep.2024.12.029
PMID:39710148
|
研究论文 | 开发了一种基于AI的预测模型,结合腹部CT图像生物标志物和临床变量,用于预测慢性乙型肝炎患者的肝细胞癌风险 | 首次将深度学习自动分割CT图像技术与梯度提升机算法结合,显著提高了预测模型的准确性 | 需要进一步验证模型在其他人群中的适用性 | 开发更准确的肝细胞癌预测模型 | 慢性乙型肝炎患者 | 数字病理学 | 肝细胞癌 | CT成像 | 梯度提升机 | 医学影像 | 推导队列5,585例患者,外部验证队列2,883例患者 |
258 | 2025-05-20 |
A Dual-Energy Computed Tomography Guided Intelligent Radiation Therapy Platform
2025-Jun-01, International journal of radiation oncology, biology, physics
DOI:10.1016/j.ijrobp.2025.01.028
PMID:39921109
|
research paper | 介绍了一种新型的双能计算机断层扫描(DECT)引导的智能放射治疗(DEIT)平台,旨在优化放射治疗流程 | 结合DECT、新型双层多叶准直器、深度学习算法进行自动分割,以及自动规划和质量保证功能 | 未提及具体样本量的限制或系统在特定条件下的性能限制 | 优化放射治疗流程,提高治疗的精确性和适应性 | 放射治疗系统及其在癌症治疗中的应用 | digital pathology | cancer | DECT, deep learning algorithms | deep learning | image | 5 cases for each of the 99 organs at risk |
259 | 2025-05-20 |
A deep learning and statistical shape modeling-based method for assessing intercondylar notch volume in anterior cruciate ligament reconstruction
2025-Jun, The Knee
DOI:10.1016/j.knee.2025.02.009
PMID:40022961
|
研究论文 | 本研究利用深度学习和统计形状建模(SSM)技术,开发了一种评估前交叉韧带重建中髁间窝体积的方法 | 结合深度学习和SSM技术,实现了髁间窝的快速3D建模,并分析了其体积和形状的变异性 | 研究仅针对ACL损伤患者,未涉及健康对照组 | 提高对髁间窝复杂3D解剖结构的理解,以优化前交叉韧带重建手术 | 前交叉韧带(ACL)损伤患者的髁间窝 | 数字病理 | 运动损伤 | 深度学习,统计形状建模(SSM) | SegResNet | 3D图像 | ACL损伤患者样本(具体数量未提及) |
260 | 2025-05-20 |
Deep learning for tibial plateau fracture detection and classification
2025-Jun, The Knee
DOI:10.1016/j.knee.2025.02.001
PMID:40023913
|
研究论文 | 本研究开发了一种深度学习模型,用于胫骨平台骨折的检测和Schatzker分类 | 首次使用计算机视觉模型对胫骨平台骨折进行Schatzker分类 | 在Schatzker分类上的准确率较低,仅34.6% | 开发深度学习模型以检测和分类胫骨平台骨折 | 胫骨平台骨折的X光片 | 计算机视觉 | 骨折 | 深度学习 | CNN (GoogleNet和ResNet) | X光图像 | 753名患者的1506张膝关节X光片,其中368例胫骨平台骨折和385例健康膝关节 |