本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 281 | 2025-10-06 |
Refined selection of individuals for preventive cardiovascular disease treatment with a transformer-based risk model
2025-Jun, The Lancet. Digital health
DOI:10.1016/j.landig.2025.03.005
PMID:40461349
|
研究论文 | 开发并验证基于Transformer的TRisk深度学习模型,用于预测心血管疾病的10年风险 | 首次将Transformer架构应用于心血管疾病风险预测,在初级预防人群和糖尿病患者中均表现出优越性能 | 研究未提及外部验证结果,且缺乏不同种族群体的验证数据 | 开发更精准的心血管疾病风险预测模型以优化预防性治疗策略 | 英国25-84岁成年人,包括初级预防人群和糖尿病患者 | 机器学习 | 心血管疾病 | 深度学习,电子健康记录分析 | Transformer | 电子健康记录 | 约300万成年人,来自389家全科诊所 | NA | Transformer | C指数,净收益,假阴性率 | NA |
| 282 | 2025-10-06 |
Future Applications of Cardiothoracic CT
2025-Jun, Radiology
IF:12.1Q1
DOI:10.1148/radiol.240085
PMID:40492912
|
综述 | 本文综述了光子计数CT、直立CT和人工智能在心胸CT成像与诊断中的未来应用前景 | 重点介绍了光子计数CT的低辐射剂量与高空间分辨率优势、直立CT对生物力学研究的新见解,以及人工智能对放射科工作流程的革命性影响 | NA | 探讨心胸CT技术的未来发展方向与应用前景 | 心胸CT成像技术及其临床应用 | 医学影像 | 心血管疾病 | 光子计数CT、直立CT、四维CT | 深度学习 | CT影像 | NA | NA | NA | NA | NA |
| 283 | 2025-10-06 |
Pharmakon or the healing art: experience of artistic-transformative transdisciplinary workshops in fibromyalgia syndrome
2025-Jun, Clinical and experimental rheumatology
IF:3.4Q2
DOI:10.55563/clinexprheumatol/yxhmcr
PMID:40556605
|
研究论文 | 本研究验证了艺术转化性跨学科工作坊对纤维肌痛综合征患者生活质量的改善效果 | 首次将转化艺术应用于纤维肌痛治疗,通过三种不同的艺术干预方式探索心理创伤的突破机制 | 观察性研究设计,样本量有限(109例),缺乏对照组,无法完全排除其他影响因素 | 验证艺术转化性跨学科干预对纤维肌痛患者生活质量、睡眠、自尊和自我效能的有效性 | 纤维肌痛综合征患者 | 心理健康干预 | 纤维肌痛综合征 | 艺术治疗干预,叙事医学,视觉思维策略 | NA | 临床评估量表数据 | 109名纤维肌痛患者完成8个月研究 | NA | NA | 匹兹堡睡眠质量指数,应激体验反应量表,WHO-5幸福指数,全球健康量表,正念注意觉知量表 | NA |
| 284 | 2025-10-06 |
Predicting heavy metal concentration in crop grain using automated machine learning models
2025-Jun, Ying yong sheng tai xue bao = The journal of applied ecology
DOI:10.13287/j.1001-9332.202506.018
PMID:40607569
|
研究论文 | 本研究使用自动化机器学习模型预测作物籽粒中的重金属浓度 | 首次将自动化机器学习(AutoML)应用于作物重金属浓度预测,并比较了六种不同模型的性能 | 基于文献数据的二次分析,样本来源和实验条件存在异质性 | 预测作物籽粒中重金属浓度并识别关键影响因素 | 作物籽粒中的铬(Cr)、镉(Cd)、铅(Pb)、砷(As)和汞(Hg)浓度 | 机器学习 | NA | 自动化机器学习 | 深度学习,分布式随机森林,极端随机树,堆叠集成,梯度提升机,广义线性模型 | 结构化数据 | 来自54篇文献的791个数据集 | AutoML | DL,DRF,XRT,SE,GBM,GLM | 预测精度 | NA |
| 285 | 2025-10-06 |
Learning salient representation of crashes and near-crashes using supervised contrastive variational autoencoder
2025-Jun-30, Accident; analysis and prevention
DOI:10.1016/j.aap.2025.108148
PMID:40592011
|
研究论文 | 提出一种结合监督对比学习的变分自编码器模型,用于学习交通安全关键事件的显著表示 | 将监督对比学习方法整合到变分自编码器框架中,通过双编码器使潜在变量具有区分性,专注于交通安全关键事件的最相关表示 | NA | 开发能够学习交通安全关键事件显著表示的深度学习模型 | 交通事故和接近事故的安全关键事件 | 机器学习 | NA | 自然驾驶研究 | 变分自编码器,对比学习 | 运动学数据 | 第二战略公路研究计划自然驾驶研究数据集 | NA | 监督对比变分自编码器 | 聚类效果 | NA |
| 286 | 2025-10-06 |
U-Net-based architecture with attention mechanisms and Bayesian Optimization for brain tumor segmentation using MR images
2025-Jun-30, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110677
PMID:40592172
|
研究论文 | 提出一种结合注意力机制和贝叶斯优化的U-Net架构用于MR图像脑肿瘤分割 | 将注意力机制集成到U-Net架构中,并采用贝叶斯优化算法进行超参数调优 | NA | 开发精准的脑肿瘤自动分割方法以辅助医学诊断 | 脑肿瘤MR图像 | 计算机视觉 | 脑肿瘤 | 磁共振成像 | CNN | 医学图像 | LGG、Healthcare和BraTS 2021三个MRI脑肿瘤数据集 | NA | U-Net | IoU, 准确率, DICE Score | NA |
| 287 | 2025-10-06 |
Explainable, federated deep learning model predicts disease progression risk of cutaneous squamous cell carcinoma
2025-Jun-28, NPJ precision oncology
IF:6.8Q1
DOI:10.1038/s41698-025-00997-4
PMID:40581685
|
研究论文 | 开发了一种基于Transformer的可解释联邦深度学习模型,用于预测皮肤鳞状细胞癌患者的疾病进展风险 | 首次将Transformer架构与联邦学习相结合用于cSCC预后预测,同时提供模型可解释性分析 | 外部验证队列的AUROC相对较低(0.65),模型性能在不同中心存在差异 | 预测皮肤鳞状细胞癌患者的疾病进展风险,实现个性化医疗和二级预防 | 皮肤鳞状细胞癌患者的诊断组织病理学肿瘤切片 | 数字病理学 | 皮肤鳞状细胞癌 | 组织病理学切片分析 | Transformer | 图像 | 来自三个临床中心的多中心数据集 | 联邦学习 | Transformer | AUROC, 风险比 | NA |
| 288 | 2025-10-06 |
AI-supported versus manual microscopy of Kato-Katz smears for diagnosis of soil-transmitted helminth infections in a primary healthcare setting
2025-Jun-27, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-07309-7
PMID:40579399
|
研究论文 | 比较AI辅助与人工显微镜在初级医疗环境中诊断土壤传播蠕虫感染的效果 | 在初级医疗环境中部署便携式全玻片扫描仪和深度学习AI,首次系统比较自主AI、专家验证AI与人工显微镜的诊断性能 | 仅分析了704份适合分析的涂片,样本来源局限于学龄儿童 | 评估AI辅助诊断土壤传播蠕虫感染的性能 | 学龄儿童的粪便样本和加藤厚涂片 | 数字病理 | 寄生虫感染 | Kato-Katz厚涂片显微镜检查,全玻片数字化扫描 | 深度学习 | 显微图像 | 965份粪便样本,其中704份适合分析 | NA | NA | 灵敏度, 特异性 | 便携式全玻片扫描仪 |
| 289 | 2025-10-06 |
Estimating the extent and sources of model uncertainty in political science
2025-Jun-24, Proceedings of the National Academy of Sciences of the United States of America
IF:9.4Q1
DOI:10.1073/pnas.2414926122
PMID:40526713
|
研究论文 | 本文开发了一种结合极值边界分析和多重宇宙方法的新敏感性分析方法,用于评估政治科学中的模型不确定性 | 将极值边界分析的全面系统性与多重宇宙方法的多维逻辑相结合,开发出能够同时评估多个建模选择对模型不确定性影响的新方法 | 方法主要应用于政治科学领域,在其他社会科学领域的适用性需要进一步验证 | 评估政治科学中模型不确定性的程度和来源 | 政治科学中的四个重要主题:民主化、制度信任、公共物品提供和福利国家慷慨度 | 社会科学研究方法 | NA | 敏感性分析 | 深度学习, 逻辑回归, 最近邻 | 定量数据 | 超过36亿个估计值 | NA | NA | 统计显著性, 系数方向 | NA |
| 290 | 2025-10-06 |
Advances and challenges in pathomics for liver cancer: From diagnosis to prognostic stratification
2025-Jun-24, World journal of clinical oncology
IF:2.6Q3
DOI:10.5306/wjco.v16.i6.107646
PMID:40585839
|
综述 | 本文综述了病理组学在肝癌从诊断到预后分层中的应用进展与挑战 | 整合人工智能与定量病理图像分析,通过全切片图像自动分析实现肿瘤分类、微血管侵犯检测和预后预测 | 多中心验证研究有限、模型可解释性不足、临床工作流程整合困难 | 推进病理组学在肝癌精准医疗中的应用 | 肝细胞癌(HCC)和胆管癌的病理标本 | 数字病理 | 肝癌 | 全切片图像分析 | 深度学习 | 病理图像 | NA | NA | MVI-AI诊断模型, CHOWDER | 准确率 | NA |
| 291 | 2025-10-06 |
Deep learning-quantified body composition from positron emission tomography/computed tomography and cardiovascular outcomes: a multicentre study
2025-Jun-23, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehaf131
PMID:40159388
|
研究论文 | 利用深度学习从PET/CT图像自动量化身体成分并评估其与心血管结局的关联 | 首次结合深度学习和图像处理从标准心脏PET/CT低剂量扫描中自动量化多种身体组织成分,并建立其与死亡或心肌梗死风险的关联 | 多中心研究但样本来源有限,仅包含三个中心的患者数据 | 评估从PET/CT自动量化的身体成分与心血管结局的关联 | 接受PET心肌灌注成像的患者 | 医学影像分析 | 心血管疾病 | PET/CT心肌灌注成像,深度学习图像分割 | 深度学习 | 医学影像(PET/CT图像) | 10085名患者(中位年龄68岁,57%男性) | NA | NA | 风险比(HR),置信区间(CI) | NA |
| 292 | 2025-10-06 |
Multimodal deep learning for predicting neoadjuvant treatment outcomes in breast cancer: a systematic review
2025-Jun-23, Biology direct
IF:5.7Q1
DOI:10.1186/s13062-025-00661-8
PMID:40551237
|
系统综述 | 系统评估多模态深度学习在预测乳腺癌新辅助治疗病理完全缓解方面的应用效果 | 首次系统比较多模态与单模态深度学习在乳腺癌新辅助治疗反应预测中的性能差异 | 研究方法存在显著异质性,依赖回顾性数据,外部验证有限 | 评估多模态深度学习预测乳腺癌新辅助治疗病理完全缓解的准确性和临床应用价值 | 接受新辅助系统治疗的乳腺癌患者 | 数字病理 | 乳腺癌 | 多模态数据整合(放射学、数字病理、多组学、临床数据) | 深度学习 | 多模态数据(影像、病理、组学、临床记录) | 51项研究,中位队列281例患者 | NA | 卷积神经网络 | AUC | NA |
| 293 | 2025-10-06 |
BoneDat, a database of standardized bone morphology for in silico analyses
2025-Jun-20, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05161-y
PMID:40541988
|
研究论文 | 开发了一个名为BoneDat的标准化骨形态数据库,用于骨科和进化生物学领域的计算机模拟分析 | 首个提供标准化、高质量人类骨形态数据集的综合数据库,包含经过整理的骨分割掩码、归一化几何体和按性别年龄组织的参考形态模板 | 数据集仅包含278个临床腰骨盆CT扫描,样本来源相对有限 | 解决骨结构-功能关系研究中缺乏标准化高质量数据集的问题,提升计算模型的可重复性和可靠性 | 人类骨盆和下脊柱骨形态 | 医学影像分析 | 骨科疾病 | CT扫描 | 深度学习模型 | 医学影像 | 278个临床腰骨盆CT扫描,年龄16-91岁,按性别在十个年龄组中平衡分布 | NA | NA | NA | NA |
| 294 | 2025-10-06 |
An Open-Source Deep Learning-Based GUI Toolbox for Automated Auditory Brainstem Response Analyses (ABRA)
2025-Jun-20, Research square
DOI:10.21203/rs.3.rs-6735294/v1
PMID:40585236
|
研究论文 | 介绍一款基于深度学习的开源图形用户界面工具ABRA,用于自动化分析听觉脑干响应 | 开发了首个结合深度学习与图形界面的开源工具,实现ABR波形的自动化标准化分析 | NA | 解决传统听觉脑干响应分析主观性强、可变性大的问题 | 听觉脑干响应波形数据 | 数字病理 | 老年疾病 | 电生理记录 | CNN | 电生理信号 | NA | NA | 卷积神经网络 | 峰值幅度, 潜伏期, 听觉阈值估计 | NA |
| 295 | 2025-10-06 |
Ultra-wide-field fundus photography and AI-based screening and referral for multiple ocular fundus diseases
2025-Jun-17, Cell reports. Medicine
DOI:10.1016/j.xcrm.2025.102187
PMID:40499544
|
研究论文 | 开发基于人工智能的深度学习算法用于多种眼底疾病的筛查和转诊推荐 | 结合超广角眼底成像和跨域协同学习方法,显著提升周边视网膜异常的检测能力 | NA | 解决眼底疾病全面筛查的困难 | 眼底疾病患者 | 计算机视觉 | 眼底疾病 | 超广角眼底成像 | 深度学习算法 | 图像 | 59,475张超广角眼底图像 | NA | Swin Transformer,跨域协同学习 | AUC | NA |
| 296 | 2025-10-06 |
Oil Palm Fruits Dataset in Plantations for Harvest Estimation Using Digital Census and Smartphone
2025-Jun-10, Scientific data
IF:5.8Q1
DOI:10.1038/s41597-025-05227-x
PMID:40494879
|
研究论文 | 本文介绍了印度尼西亚中加里曼丹商业种植园的油棕鲜果串图像数据集,用于数字普查和智能手机收获估算 | 提供了包含五个成熟阶段(未熟、欠熟、成熟、开花和异常)的油棕鲜果串图像数据集,并采用数据增强技术处理类别不平衡问题 | 图像存在部分可见性、低对比度、遮挡和模糊等现实世界复杂情况 | 开发用于油棕鲜果串检测和分类的深度学习模型,以监测收获时间、预测产量和优化种植园运营资源 | 油棕鲜果串(FFBs) | 计算机视觉 | NA | 智能手机视频录制,计算机视觉标注工具(CVAT) | 深度学习模型 | 图像 | 训练集10,207张图像,验证集2,896张图像,测试集1,400张图像 | NA | NA | NA | NA |
| 297 | 2025-10-06 |
Near-term prediction of sustained ventricular arrhythmias applying artificial intelligence to single-lead ambulatory electrocardiogram
2025-Jun-02, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehaf073
PMID:40157386
|
研究论文 | 本研究开发了一种基于深度学习的单导联动态心电图模型,用于短期预测持续性室性心律失常 | 首次将深度学习应用于单导联动态心电图数据,能够提前预测持续性室性心动过速的发生,并发现了早期除极模式作为潜在预测因子 | 回顾性研究设计,心律失常事件发生率较低(0.5%) | 开发能够短期预测危及生命的室性心律失常的人工智能模型 | 来自六个国家的247,254份14天动态心电图记录 | 机器学习 | 心血管疾病 | 动态心电图监测 | 深度学习 | 心电图信号 | 247,254份动态心电图记录(开发集183,177份,内部验证43,580份,外部验证20,497份) | NA | NA | AUC, 敏感度, 特异度 | NA |
| 298 | 2025-10-06 |
Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycle
2025-Jun-01, Molecular biology of the cell
IF:3.1Q3
DOI:10.1091/mbc.E25-01-0009
PMID:40327364
|
研究论文 | 通过深度学习驱动的成像技术研究真核微生物完整生命周期中的细胞分裂和细胞生长过程 | 开发了基于深度学习视频帧插值的新型细胞追踪算法FIEST,首次实现了对完整微生物生命周期的直接连续研究 | 研究仅限于特定微生物物种,需要在其他病原体和单细胞系统中进一步验证 | 定量研究真核微生物完整生命周期中的细胞生长和细胞分裂激酶活性 | 真核微生物的完整生命周期,包括休眠、交配、减数分裂和细胞分裂等状态 | 计算机视觉 | NA | 微流控培养、显微图像分割、深度学习视频帧插值 | 深度学习 | 显微图像、视频序列 | 长达三个有性生殖世代的微生物种群 | Python | FIEST(基于视频帧插值的细胞追踪算法) | NA | NA |
| 299 | 2025-10-06 |
A Data-Centric Approach to Deep Learning for Brain Metastasis Analysis at MRI
2025-Jun, Radiology
IF:12.1Q1
DOI:10.1148/radiol.242416
PMID:40552999
|
研究论文 | 开发了一种基于数据中心的深度学习方法,用于MRI中脑转移瘤的检测、分割和纵向追踪 | 采用数据中心方法,通过迭代数据标注和系统质量控制提高参考分割的一致性,能够检测所有尺寸的脑转移瘤 | 回顾性研究设计,部分患者性别信息缺失 | 开发可泛化的深度学习系统用于脑转移瘤的MRI分析 | 脑转移瘤患者和未患脑转移瘤的癌症患者的MRI扫描 | 医学影像分析 | 脑转移瘤 | MRI | 深度学习 | 医学影像 | 1623名患者的1985次扫描,包含5552个脑转移瘤 | nnU-Net | 改进的nnU-Net | 灵敏度, Dice相似系数, 归一化表面距离 | NA |
| 300 | 2025-10-06 |
Spatiotemporal predictions of toxic urban plumes using deep learning
2025-Jun, PNAS nexus
IF:2.2Q1
DOI:10.1093/pnasnexus/pgaf198
PMID:40583909
|
研究论文 | 提出一种名为ST-GasNet的深度学习模型,用于快速预测城市有毒烟羽的时空演化 | 受烟羽扩散数学方程启发的新型深度学习架构,能够准确预测烟羽在复杂城市环境中的分裂与演化 | 模型训练数据来源于有限的高分辨率大涡模拟序列,可能受限于训练数据的多样性 | 开发快速预测城市有毒烟羽时空演化的应急响应方法 | 城市大气中有毒烟羽的扩散行为 | 机器学习 | NA | 大涡模拟 | 深度学习 | 时空序列数据 | 有限的时间序列数据集 | NA | ST-GasNet | 预测准确率 | NA |