深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202506-202506] [清除筛选条件]
当前共找到 1339 篇文献,本页显示第 301 - 320 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
301 2025-07-02
Prognostic value of body composition out of PSMA-PET/CT in prostate cancer patients undergoing PSMA-therapy
2025-Jun-28, European journal of nuclear medicine and molecular imaging IF:8.6Q1
研究论文 本研究开发了一种基于深度学习的全身CT分割方法,用于评估转移性去势抵抗性前列腺癌(mCRPC)患者在接受[177Lu]Lu-PSMA放射性配体治疗(RLT)前的身体组成 利用深度学习模型从标准PSMA-PET-CT中自动分割不同组织区域,超越传统的PSMA-PET评估,识别具有潜在预后价值的身体组成指标 研究为回顾性设计,样本量较小(n=86),需要在更大的前瞻性数据集中验证潜在预后参数 评估mCRPC患者在接受RLT前的身体组成指标对治疗预后的影响 86名前列腺癌患者 数字病理学 前列腺癌 深度学习分割模型 深度学习 CT图像 86名前列腺癌患者的[68Ga]Ga-PSMA-PET-CT扫描数据
302 2025-07-02
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis
2025-Jun-28, Updates in surgery IF:2.4Q2
综述 本文通过文献计量和可视化分析,探讨了人工智能在疼痛管理领域的研究现状、热点和未来趋势 首次采用文献计量学方法系统分析人工智能在疼痛管理领域的应用,揭示了研究热点和未来发展方向 仅纳入英文文献,可能遗漏其他语言的重要研究成果 了解人工智能在疼痛管理领域的研究现状、热点和趋势 970篇关于人工智能应用于疼痛管理的科学论文 机器学习 疼痛管理 文献计量分析、可视化分析 机器学习、深度学习、人工神经网络 文献数据 970篇论文,涉及5679位作者、2030个学术机构和84个国家/地区
303 2025-07-02
Identifying visible tissue in intraoperative ultrasound: a method and application
2025-Jun-28, International journal of computer assisted radiology and surgery IF:2.3Q2
研究论文 提出一种用于识别术中超声可见组织的迭代过滤和拓扑方法,并应用于检测声影和构建感知显著性置信图 提出了一种新的迭代过滤和拓扑方法来分析探头-组织接触,该方法在体内数据和医学模型数据上表现出优越的分类性能 未明确提及具体局限性,但可能包括算法对参数扰动、斑点噪声和数据分布变化的敏感性 开发一种方法来识别术中超声扫描中的可见组织,以支持临床培训和机器人超声自动化 术中超声扫描中的可见组织 医学影像分析 NA 迭代过滤和拓扑方法 NA 超声图像 包含体内数据和医学模型数据的数据集
304 2025-07-02
Machine Learning Based Multi-Class Classification and Grading of Squamous Cell Carcinoma in Optical Microscopy
2025-Jun-27, Microscopy research and technique IF:2.0Q3
研究论文 本研究利用机器学习和深度学习模型对鳞状细胞癌(SCC)的组织病理学图像进行高效分析 结合机器学习进行特征分析和可解释的深度学习模型,实现了更高准确性和效率的SCC分级 未提及模型在更大规模或多样化数据集上的泛化能力 开发自动化的鳞状细胞癌分级方法以减少对人工病理的依赖 鳞状细胞癌的组织病理学图像 数字病理 鳞状细胞癌 离散小波变换、灰度共生矩阵和直方图特征提取 支持向量机、朴素贝叶斯、决策树、KNN、神经网络、CNN 图像 未明确提及样本数量
305 2025-07-02
Design and Optimization of an automatic deep learning-based cerebral reperfusion scoring (TICI) using thrombus localization
2025-Jun-26, Journal of neuroradiology = Journal de neuroradiologie
研究论文 本文设计和优化了一种基于深度学习的自动脑灌注评分(TICI)系统,利用血栓定位技术 开发了一种基于CNN的人工智能模型,用于自动分类TICI评分,并探索了血栓定位对模型性能的影响 三分类模型(TICI 0,1或2a vs 2b vs 2c或3)的性能不足,自动血栓检测模块未能提升模型表现 创建并优化基于AI的DSA TICI评分分类模型,以减少评估变异性 接受机械取栓术患者的数字减影血管造影(DSA)数据 数字病理学 脑血管疾病 数字减影血管造影(DSA) CNN 医学影像 422名患者,2492个血栓标注,1609个DSA序列
306 2025-07-02
Fog-Enabled Modular Deep Learning Platform for Textual Data Mining in Healthcare for Pathology Detection in Burkina Faso
2025-Jun-26, Studies in health technology and informatics
研究论文 本文提出了一种基于深度学习的医疗诊断支持平台架构,适用于布基纳法索的病理检测 结合诊断和治疗指南与通过OCR从手写处方和电子健康记录中提取的文本数据构建模型,并比较了雾计算和云计算两种架构 研究基于模拟验证,未涉及实际临床应用的详细测试 开发适用于布基纳法索医疗系统的深度学习诊断支持平台 手写处方和电子健康记录中的文本数据 自然语言处理 NA OCR, 深度学习 NA 文本 NA
307 2025-07-02
Smart Wearable Analytics for Cycling: AI-Based Physical Exertion Prediction
2025-Jun-26, Studies in health technology and informatics
research paper 评估深度学习在骑行运动中体力消耗预测的应用,特别是基于LSTM与多头注意力机制的模型 采用LSTM结合多头注意力机制的模型进行体力消耗预测,并通过MRMR和UFR方法进行特征选择 样本量较小,仅27名健康参与者,且未涉及不同健康状况的人群 预测骑行运动中的体力消耗水平 27名健康骑行者的生理数据 machine learning NA LSTM, Multi-Head Attention, MRMR, UFR LSTM with Multi-Head Attention 生理数据(心率、血氧饱和度、踏频、HRV特征) 27名健康参与者
308 2025-07-02
Reduction of Membrane-derived Noise Using Beam-tilt Measurement and Deep Learning in Observation using Environmental Cell
2025-Jun-24, Microscopy (Oxford, England)
研究论文 提出了一种利用电子束倾斜测量和深度学习去除环境细胞电子显微镜中膜衍生噪声的方法 首次将Noise2Noise深度学习方法应用于环境细胞电子显微镜图像处理,有效去除膜噪声并保留样本信息 未明确说明方法在不同类型样本或极端条件下的适用性 提高环境细胞电子显微镜图像质量以实现高信噪比测量 环境细胞中的催化剂和纳米材料 计算机视觉 NA 电子显微镜成像 Noise2Noise(深度学习) 电子显微镜图像序列 未明确说明具体样本数量
309 2025-07-02
Deep learning for osteoporosis screening in dental practice: a systematic review
2025-Jun-20, Dento maxillo facial radiology
系统综述 本文通过系统综述评估深度学习工具在牙科影像中用于骨质疏松筛查的性能,并探讨这些模型是否已在牙科实践中应用 首次系统综述了深度学习在牙科骨质疏松筛查中的应用,并指出尽管技术有所进展,但临床适用性仍有限 缺乏外部验证和临床整合,限制了其实际应用 评估深度学习工具在骨质疏松筛查中的性能及其在牙科实践中的应用情况 使用牙科影像(如全景X光片和计算机断层扫描)进行骨质疏松筛查的深度学习模型 数字病理 骨质疏松 深度学习(DL),双能X线吸收测定法(DXA) CNN(如VGG16、GoogleNet、ResNet、AlexNet、EfficientNet) 牙科影像(如全景X光片和计算机断层扫描) 13项研究符合纳入标准
310 2025-07-02
Integrating GWAS and Transcriptomic Data Using PrediXcan and Multimodal Deep Learning Reveals Genetic Basis and Drug Repositioning Opportunities for Alzheimer's Disease
2025-Jun-10, medRxiv : the preprint server for health sciences
研究论文 本研究整合多组学数据与先进人工智能方法,揭示阿尔茨海默病表型调控的分子基础,并探索基于个体遗传背景的个性化药物重定位策略 结合PrediXcan方法和多模态深度学习模型AD-MIF,显著提升AD相关表型预测的AUC值10-20%,并发现新的药物重定位机会 研究样本量相对有限(553个背外侧前额叶皮层样本),且仅在SAMP8 AD模型小鼠中验证了部分药物效果 阐明阿尔茨海默病的复杂分子机制并探索个性化治疗策略 阿尔茨海默病相关的基因、分子通路和候选药物 机器学习 阿尔茨海默病 GWAS、转录组数据分析、多模态深度学习 AD-MIF(多模态信息融合模型)、autoencoder、graph autoencoder 基因型数据、基因表达数据 553个背外侧前额叶皮层样本(来自ROSMAP数据库)
311 2025-07-02
Deep Learning-Based Segmentation of Gravity-Loaded Human Spine
2025-Jun-10, Journal of visualized experiments : JoVE
研究论文 本研究提出了一种基于深度学习的协议,用于在重力加载条件下分割人类脊柱图像,以更准确地评估脊柱对齐情况 使用带有3D卷积层和残差连接的U-Net CNN进行脊柱分割,并能够导出3D模型用于3D打印 未提及模型在多样化人群中的泛化能力或与其他成像技术的比较 开发一种可靠且适应性强的工具,用于在重力加载条件下准确分割脊柱和其他解剖结构 重力加载条件下的人类脊柱图像 数字病理学 脊柱侧弯和退行性椎间盘疾病 负重锥形束计算机断层扫描(CBCT) U-Net CNN 3D图像 未提及具体样本数量
312 2025-07-02
Integrating Social Determinants of Health and Established Risk Factors to Predict Cardiovascular Disease Risk Among Healthy Older Adults
2025-Jun, Journal of the American Geriatrics Society IF:4.3Q1
研究论文 本研究整合社会健康决定因素(SDoH)与传统风险因素,利用机器学习和深度学习模型预测健康老年人的心血管疾病(CVD)风险 首次将SDoH与传统CVD风险因素结合,利用先进的ML和DL模型进行风险预测,并发现SDoH对女性预测效果更显著 研究对象仅限于70岁及以上无CVD、痴呆和独立性受限身体残疾的老年人,可能限制结果的普适性 提高心血管疾病风险预测的准确性 12,896名70岁及以上初始无CVD、痴呆和独立性受限身体残疾的老年人(5,884名男性和7,012名女性) 机器学习 心血管疾病 机器学习和深度学习 Random Survival Forest (RSF), Deepsurv, Neural Multi-Task Logistic Regression (NMTLR) 纵向研究数据 12,896人(5,884名男性和7,012名女性)
313 2025-07-02
Longitudinal brain age in first-episode mania youth treated with lithium or quetiapine
2025-Jun, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology IF:6.1Q1
研究论文 研究锂和喹硫平在双相情感障碍和分裂情感性障碍早期阶段的神经保护作用 使用深度学习模型预测脑龄,探讨锂和喹硫平对首次躁狂发作(FEM)患者脑结构的影响 样本量较小,随访时间较短,未能观察到治疗组间的显著差异 评估锂和喹硫平对首次躁狂发作(FEM)患者的神经保护效果 首次躁狂发作(FEM)的年轻患者(15-25岁) 数字病理学 双相情感障碍和分裂情感性障碍 T1加权扫描和深度学习模型 深度学习模型 MRI图像 FEM患者39人(锂治疗21人,喹硫平治疗18人),健康对照组29人,训练数据集53,542人
314 2025-07-02
Fully automated image quality assessment based on deep learning for carotid computed tomography angiography: A multicenter study
2025-Jun, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
研究论文 开发并评估基于深度学习和多元逻辑回归算法的全自动模型,用于颈动脉CT血管造影图像质量评估 首次提出结合3D Res U-net和多元逻辑回归的全自动图像质量评估模型,并在多中心数据集中验证其性能 研究为回顾性设计,且仅评估了颈动脉CTA图像 开发高效准确的颈动脉CTA图像质量自动化评估方法 颈动脉CT血管造影图像 数字病理 心血管疾病 CT血管造影 3D Res U-net + 逻辑回归 医学影像 840例来自4家三甲医院的颈动脉CTA图像
315 2025-07-02
Bppv nystagmus signals diagnosis framework based on deep learning
2025-Jun, Physical and engineering sciences in medicine IF:2.4Q2
research paper 提出了一种基于深度学习的BPPV眼震信号诊断框架,用于改善良性阵发性位置性眩晕的诊断 开发了结合Egeunet神经网络模型和FFT等数学统计技术的综合框架,提高了眼震数据的精确分割和分析能力 未明确提及样本量或具体临床验证结果 改善BPPV的诊断准确性和临床决策支持 良性阵发性位置性眩晕(BPPV)患者的眼震信号 digital pathology geriatric disease Fast Fourier Transform (FFT) Egeunet (CNN-based) eye movement signals NA
316 2025-07-01
A two-step automatic identification of contrast phases for abdominal CT images based on residual networks
2025-Jun-27, Insights into imaging IF:4.1Q1
研究论文 基于残差网络的两步法自动识别腹部CT图像的对比阶段 提出了一种基于ResNet的两步法模型,用于自动准确识别腹部CT图像的对比阶段,显著优于传统的一步法策略 研究依赖于回顾性收集的数据集,可能无法涵盖所有临床场景 开发一种深度学习模型,用于自动准确识别腹部CT图像的对比阶段 腹部对比增强CT扫描图像 计算机视觉 NA 深度学习 ResNet 图像 内部数据集1175例,外部测试数据集215例
317 2025-07-01
Advancing atomic electron tomography with neural networks
2025-Jun-19, Applied microscopy
综述 本文综述了神经网络在原子电子断层扫描(AET)中的应用进展 整合深度学习特别是卷积神经网络(CNN)到AET工作流程中,以提高重建保真度 重建伪影由几何限制和电子剂量约束引起,可能阻碍可靠的原子结构确定 提高三维原子结构的准确测定,以理解和控制纳米材料的特性 纳米材料的三维原子结构 计算机视觉 NA 原子电子断层扫描(AET) CNN 图像 NA
318 2025-07-01
Enhanced AlexNet with Gabor and Local Binary Pattern Features for Improved Facial Emotion Recognition
2025-Jun-19, Sensors (Basel, Switzerland)
研究论文 本文提出了一种结合Gabor和局部二值模式特征的增强AlexNet模型,用于提高面部情绪识别的准确性和适应性 通过整合Gabor和LBP特征提取技术到改进的AlexNet架构中,显著提升了面部情绪识别的性能 研究未提及模型在极端光照或遮挡条件下的表现 提高面部情绪识别的准确性和适应性,特别是在硬件资源有限的环境中 面部情绪识别 计算机视觉 NA Gabor和局部二值模式(LBP)特征提取 改进的AlexNet 图像 使用了FER2013和RAF-DB两个基准数据集进行验证
319 2025-07-01
Dental caries detection in children using intraoral scans and deep learning
2025-Jun-15, Journal of dentistry IF:4.8Q1
研究论文 本研究旨在利用深度学习和儿童口腔内扫描数据自动检测龋齿,并评估模型预测与牙科医生评估在3D模型上的一致性 首次使用Attention U-Net模型对儿童口腔内扫描数据进行龋齿检测,并比较模型与牙科医生在不同龋齿程度下的一致性 模型对于早期和中等程度龋损的检测性能有限,需要进一步改进模型准确性和泛化能力 开发基于AI的儿童龋齿自动检测方法 儿童口腔内扫描数据 数字病理 龋齿 深度学习 Attention U-Net 3D扫描数据 第一队列332颗龋齿牙齿(训练192,验证63,测试77),第二独立队列119颗龋齿牙齿用于外部验证
320 2025-07-01
The diagnostic value of artificial intelligence in oral squamous cell carcinoma: A systematic review and meta-analysis
2025-Jun-13, Journal of stomatology, oral and maxillofacial surgery
meta-analysis 通过系统综述和荟萃分析评估人工智能在口腔鳞状细胞癌诊断中的性能 首次通过系统综述和荟萃分析全面评估AI在OSCC诊断中的表现,并比较深度学习和传统机器学习方法的性能差异 研究间存在显著异质性(I² > 97%),需要标准化方法和外部验证 评估人工智能在口腔鳞状细胞癌诊断中的准确性和临床应用价值 口腔鳞状细胞癌(OSCC)的诊断 数字病理 口腔鳞状细胞癌 AI诊断系统 深度学习和传统机器学习 医学影像和病理数据 24项研究共18,574份样本
回到顶部