深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202506-202506] [清除筛选条件]
当前共找到 572 篇文献,本页显示第 381 - 400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
381 2025-05-23
Parkinson's disease detection using inceptionV3: A Deep learning approach
2025-Jun, MethodsX IF:1.6Q2
研究论文 本研究使用深度学习算法对帕金森病患者绘制的螺旋图像进行分类,作为一种低成本诊断技术 利用四种CNN架构(DenseNet121、InceptionV3、VGG16和LeNet)进行螺旋图像分类,并通过迁移学习提高模型性能 未来研究可结合螺旋图像与其他生物标志物或更广泛的运动测量数据进行更全面的疾病评估 开发一种非侵入性、高效且自动化的帕金森病早期检测方法 帕金森病患者和健康个体绘制的螺旋图像 计算机视觉 帕金森病 深度学习 CNN(包括DenseNet121、InceptionV3、VGG16和LeNet) 图像 NA
382 2025-05-23
Deep learning-based technique for investigating the behavior of MEMS systems with multiwalled carbon nanotubes and electrically actuated microbeams
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种基于深度学习的模型,用于研究带有碳纳米管和电驱动微梁的MEMS系统的行为 开发了一种新颖的基于DNN的模型来解决MEMS中的非线性系统,特别是针对带有MWCNTs的振荡器 由于系统的刚度、参数敏感性和非线性,预测这些系统的行为具有挑战性 研究MEMS振荡器的非线性振动特性,特别是与纳米管和电驱动微梁相关的特性 双端固定的电驱动微梁和多壁碳纳米管(MWCNTs) 机器学习 NA 深度神经网络(DNN) DNN 数值模拟数据 NA
383 2025-05-22
Current Status, Hotspots, and Prospects of Artificial Intelligence in Ophthalmology: A Bibliometric Analysis (2003-2023)
2025-Jun, Ophthalmic epidemiology IF:1.7Q3
综述 本文通过文献计量学方法分析了2003-2023年间人工智能在眼科领域的研究现状、热点及未来趋势 采用VOSviewer、CiteSpace和R包Bibliometrix进行文献计量分析,系统梳理了AI在眼科领域的发展脉络和研究热点 仅基于Web of Science数据库的文献,可能未涵盖所有相关研究;未深入探讨技术、监管和伦理等具体挑战 总结人工智能在眼科领域的研究现状并展望未来发展方向 3377篇来自98个国家4035个机构的眼科AI研究文献 数字病理 眼科疾病 文献计量分析 GAN, ChatGPT 文献数据 3377篇文献,涉及1345位研究人员
384 2025-05-22
DRBP-EDP: classification of DNA-binding proteins and RNA-binding proteins using ESM-2 and dual-path neural network
2025-Jun, NAR genomics and bioinformatics IF:4.0Q1
研究论文 本研究提出了一种名为DRBP-EDP的分阶段分类方法,结合ESM-2和双路径神经网络,用于分类DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) 整合ESM-2与双路径神经网络进行蛋白质分类,并设计了高质量数据集构建方法 未明确提及具体限制 开发高效准确的DNA结合蛋白和RNA结合蛋白分类方法 DNA结合蛋白(DBPs)和RNA结合蛋白(RBPs) 生物信息学 NA 深度学习 双路径神经网络 蛋白质序列数据 未明确提及具体样本数量
385 2025-05-21
Optimizing Skin Cancer Diagnosis: A Modified Ensemble Convolutional Neural Network for Classification
2025-Jun, Microscopy research and technique IF:2.0Q3
研究论文 本研究提出了一种结合随机猫群优化算法和集成卷积神经网络的RCS-ECNN方法,用于皮肤癌不同阶段的分类 提出了结合随机猫群优化(CSO)与集成卷积神经网络(ECNN)的RCS-ECNN方法,用于优化皮肤癌分类 未提及方法在临床环境中的实际应用效果或泛化能力 优化皮肤癌诊断,提高分类准确率 皮肤癌的不同阶段 计算机视觉 皮肤癌 随机猫群优化(CSO),GrabCut算法 集成卷积神经网络(ECNN),深度神经网络(DNN),Keras DNN(KDNN) 图像 HAM10000和ISIC数据集
386 2025-02-20
Letter to the Editor: "A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia"
2025-Jun, Journal of dental research IF:5.7Q1
NA NA NA NA NA NA NA NA NA NA NA NA
387 2025-04-25
Response to the Letter to the Editor: "A Deep Learning System to Predict Epithelial Dysplasia in Oral Leukoplakia"
2025-Jun, Journal of dental research IF:5.7Q1
NA NA NA NA NA NA NA NA NA NA NA NA
388 2025-05-21
Accuracy of an Automated Bone Scan Index Measurement System Enhanced by Deep Learning of the Female Skeletal Structure in Patients with Breast Cancer
2025-Jun, Nuclear medicine and molecular imaging IF:1.3Q3
research paper 该研究验证了通过深度学习女性骨骼结构更新的VSBONE® BSI系统在乳腺癌患者中的诊断准确性 VSBONE ver.3通过深度学习957名女性的骨骼结构,提高了在乳腺癌患者中的诊断准确性 研究样本量较小,仅包括220名日本乳腺癌患者 验证更新的VSBONE系统在乳腺癌患者中的诊断准确性 乳腺癌患者 digital pathology breast cancer bone scintigraphy with SPECT/CT deep learning image 220名日本乳腺癌患者(20名有活动性骨转移,200名无骨转移)
389 2025-05-21
Classification of differentially activated groups of fibroblasts using morphodynamic and motile features
2025-Jun, APL bioengineering IF:6.6Q1
research paper 该研究提出了一种基于人工智能的分类框架,通过分析成纤维细胞的形态动力学和运动特征来识别和表征不同激活状态的成纤维细胞 利用形态动力学和运动特征作为成纤维细胞激活状态的生物物理标志物,克服了传统分子标记的局限性 研究仅基于与乳腺癌细胞系共培养的成纤维细胞数据,可能无法完全代表体内复杂微环境 开发新型成纤维细胞分类方法以更好地理解肿瘤微环境 与乳腺癌细胞系共培养的成纤维细胞 digital pathology breast cancer label-free live-cell imaging deep learning and machine learning algorithms image NA
390 2025-05-21
Gluten identification from food images using advanced deep learning and transfer learning methods
2025-Jun, Journal of food science and technology
research paper 本文提出了一种基于深度学习和迁移学习的创新方法,用于从食物图像中识别麸质,旨在帮助乳糜泻患者识别含麸质食物 利用EfficientNet预训练模型进行麸质图像分类,在食物图像识别领域具有创新性 研究仅基于Food101数据集的子集,可能无法涵盖所有食物类型 开发一种辅助乳糜泻患者识别含麸质食物的工具 食物图像 computer vision celiac disease deep learning, transfer learning CNN, EfficientNet image 20,000张训练图像和2,000张测试图像
391 2025-05-20
A review of multimodal fusion-based deep learning for Alzheimer's disease
2025-Jun-07, Neuroscience IF:2.9Q2
review 本文综述了基于深度学习的多模态融合在阿尔茨海默病研究中的最新进展 系统总结了MRI和PET多模态数据融合的深度学习方法及其在阿尔茨海默病研究中的应用 面临数据稀缺和不平衡、机构间数据异质性等关键挑战 推动阿尔茨海默病早期诊断和干预策略的发展 阿尔茨海默病相关的MRI和PET多模态影像数据 digital pathology geriatric disease MRI, PET deep learning models image NA
392 2025-05-20
Prognostic models for predicting oncological outcomes after surgical resection of a nonmetastatic renal cancer: A critical review of current literature
2025-Jun, Urologic oncology
综述 本文全面评估并批判性地评价了当前用于非转移性肾细胞癌(nmRCC)肾切除术后预后预测的模型 讨论了人工智能(AI)尤其是机器学习和深度学习算法在生存预测模型中的应用 AI模型的广泛应用受到外部验证有限、成本效益分析缺乏和临床效用未确认的限制 评估和批判当前用于nmRCC肾切除术后预后预测的模型 非转移性肾细胞癌(nmRCC)患者 数字病理学 肾癌 机器学习和深度学习算法 NA 临床、病理、基因组和分子数据 NA
393 2025-05-20
Comprehensive Morphometric Analysis to Identify Key Neuroimaging Biomarkers for the Diagnosis of Adult Hydrocephalus Using Artificial Intelligence
2025-Jun-01, Neurosurgery IF:3.9Q1
研究论文 本研究通过人工智能技术识别用于诊断成人脑积水的关键神经影像生物标志物,旨在开发实用且准确的诊断工具 利用SHAP特征重要性分析确定了关键的一维形态测量生物标志物,这些标志物易于测量且能提供与体积测量相似的分类性能 研究样本量较小,且仅针对非正常压力脑积水患者和健康受试者 开发实用且准确的诊断工具,帮助神经外科医生早期和准确诊断脑积水 成人非正常压力脑积水患者和健康受试者 数字病理 脑积水 人工图像处理,机器学习分类器 Gradient Boosting, 机器学习和深度学习分类器 神经影像数据 未明确提及具体样本数量,仅提到涉及非正常压力脑积水患者和健康受试者
394 2025-05-20
AI model using CT-based imaging biomarkers to predict hepatocellular carcinoma in patients with chronic hepatitis B
2025-Jun, Journal of hepatology IF:26.8Q1
研究论文 开发了一种基于AI的预测模型,结合腹部CT图像生物标志物和临床变量,用于预测慢性乙型肝炎患者的肝细胞癌风险 首次将深度学习自动分割CT图像技术与梯度提升机算法结合,显著提高了预测模型的准确性 需要进一步验证模型在其他人群中的适用性 开发更准确的肝细胞癌预测模型 慢性乙型肝炎患者 数字病理学 肝细胞癌 CT成像 梯度提升机 医学影像 推导队列5,585例患者,外部验证队列2,883例患者
395 2025-05-20
A Dual-Energy Computed Tomography Guided Intelligent Radiation Therapy Platform
2025-Jun-01, International journal of radiation oncology, biology, physics
research paper 介绍了一种新型的双能计算机断层扫描(DECT)引导的智能放射治疗(DEIT)平台,旨在优化放射治疗流程 结合DECT、新型双层多叶准直器、深度学习算法进行自动分割,以及自动规划和质量保证功能 未提及具体样本量的限制或系统在特定条件下的性能限制 优化放射治疗流程,提高治疗的精确性和适应性 放射治疗系统及其在癌症治疗中的应用 digital pathology cancer DECT, deep learning algorithms deep learning image 5 cases for each of the 99 organs at risk
396 2025-05-20
A deep learning and statistical shape modeling-based method for assessing intercondylar notch volume in anterior cruciate ligament reconstruction
2025-Jun, The Knee
研究论文 本研究利用深度学习和统计形状建模(SSM)技术,开发了一种评估前交叉韧带重建中髁间窝体积的方法 结合深度学习和SSM技术,实现了髁间窝的快速3D建模,并分析了其体积和形状的变异性 研究仅针对ACL损伤患者,未涉及健康对照组 提高对髁间窝复杂3D解剖结构的理解,以优化前交叉韧带重建手术 前交叉韧带(ACL)损伤患者的髁间窝 数字病理 运动损伤 深度学习,统计形状建模(SSM) SegResNet 3D图像 ACL损伤患者样本(具体数量未提及)
397 2025-05-20
Deep Learning for Ocean Forecasting: A Comprehensive Review of Methods, Applications, and Datasets
2025-Jun, IEEE transactions on cybernetics IF:9.4Q1
综述 本文全面回顾了基于深度学习的海洋预报研究,包括模型架构、时空多尺度及可解释性,并探讨了结合理论驱动与数据驱动模型的混合架构的可行性 展示了深度学习在挖掘海洋学时空数据中的模式和深度洞察方面的潜力,为海洋预报领域的革新提供了新的可能性 讨论了当前研究的局限性,并展望了未来趋势 探索深度学习在海洋预报中的应用,以补充传统数值海洋预报的不足 海洋预报 机器学习 NA 深度学习 NA 时空数据 NA
398 2025-05-20
Deep-learning-assisted medium optimization improves hyaluronic acid production by Streptococcus zooepidemicus
2025-Jun, Journal of bioscience and bioengineering IF:2.3Q3
research paper 利用深度学习算法优化培养基,提高兽疫链球菌生产透明质酸的效率 采用深度学习算法优化培养基成分,显著提高了透明质酸的生产效率 未提及实验的重复性或模型的泛化能力 提高兽疫链球菌生产透明质酸的效率 兽疫链球菌及其生产的透明质酸 machine learning NA 深度学习 DL 实验数据 初始训练数据集OA01-18和54种候选优化培养基OM01-54
399 2025-05-20
Histological tumor necrosis predicts decreased survival after neoadjuvant chemotherapy in head and neck squamous cell carcinoma
2025-Jun, Oral oncology IF:4.0Q2
研究论文 本研究探讨了新辅助放疗或放化疗对头颈部鳞状细胞癌(HNSCC)肿瘤免疫景观及患者生存的影响,并发现肿瘤坏死是预测不良预后的有用生物标志物 首次发现肿瘤坏死可作为预测HNSCC患者新辅助治疗反应的生物标志物,并成功开发了基于AI的深度学习方法用于识别组织病理学标本中的肿瘤坏死 研究样本量相对较小(n=53),且为回顾性研究,可能存在选择偏倚 研究新辅助放疗或放化疗对HNSCC肿瘤免疫景观及患者生存的影响,并寻找预测治疗反应的生物标志物 头颈部鳞状细胞癌(HNSCC)患者 数字病理学 头颈部鳞状细胞癌 免疫组织化学染色,AI深度学习 深度学习 组织病理学图像 53例接受新辅助治疗的HNSCC患者,171例未接受新辅助治疗的HNSCC患者作为验证集
400 2025-05-20
SSA-sMLP: A venous thromboembolism risk prediction model using separable self-attention and spatial-shift multilayer perceptrons
2025-Jun, Thrombosis research IF:3.7Q1
research paper 本研究提出了一种结合可分离自注意力和空间移位多层感知器的深度学习模型SSA-sMLP,用于静脉血栓栓塞症(VTE)的风险预测 通过可分离自注意力模块动态建模跨维度特征交互,改进的空间移位MLP(S-MLPv2)精确捕捉局部非线性关联,实现了特征交互建模效率和精度的双重提升 模型性能验证仅基于单一医院的数据集,可能影响泛化能力 开发高精度静脉血栓栓塞症风险预测模型以辅助临床决策 113,836份临床记录构成的多维度VTE数据集 machine learning cardiovascular disease 深度学习 SSA-sMLP(结合可分离自注意力和S-MLPv2) 结构化临床数据 113,836份医院临床记录
回到顶部