本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
441 | 2025-05-12 |
Incorporating Radiologist Knowledge Into MRI Quality Metrics for Machine Learning Using Rank-Based Ratings
2025-Jun, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29672
PMID:39690114
|
research paper | 该研究开发了一种基于放射科医生图像排名和深度学习模型的MRI图像质量评估指标 | 利用放射科医生的图像排名训练深度学习模型,开发了专门针对MRI的图像质量评估指标,替代传统的均方误差和结构相似性指标 | 研究仅使用了NYU fastMRI Initiative神经数据库的数据,可能限制了模型的泛化能力 | 开发专门针对MRI图像的深度学习质量评估指标 | MRI图像质量评估 | digital pathology | NA | MRI | EfficientNet, IQ-Net | image | 2916个独特图像对的19,344个排名数据 |
442 | 2025-05-12 |
Computer-Aided Detection (CADe) and Segmentation Methods for Breast Cancer Using Magnetic Resonance Imaging (MRI)
2025-Jun, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.29687
PMID:39781684
|
review | 本文综述了计算机辅助检测(CADe)系统在乳腺癌MRI中的应用,包括技术细节、分割模型及最新深度学习架构 | 强调了从传统算法到复杂深度学习模型(如U-Nets)的最新进展,以及多参数MRI采集的CADe实现 | 面临假阳性和假阴性率不稳定、影像数据解释复杂、系统性能差异大、缺乏大规模研究和多中心模型等技术挑战 | 提高乳腺癌早期检测的准确性和效率,优化CADe系统在临床实践中的应用 | 乳腺癌MRI影像 | digital pathology | breast cancer | MRI | U-Nets, supervised and unsupervised ML, DL architectures | image | NA |
443 | 2025-05-12 |
DeepTree-AAPred: Binary tree-based deep learning model for anti-angiogenic peptides prediction
2025-Jun, Journal of molecular graphics & modelling
IF:2.7Q2
DOI:10.1016/j.jmgm.2025.108982
PMID:40020469
|
research paper | 提出了一种基于二叉树的深度学习模型DeepTree-AAPred,用于预测抗血管生成肽 | 结合了二叉树的深度学习结构,并使用ProtBERT和ESM-2预训练模型提取1D和2D广义特征,进一步利用BiLSTM和TextCNN捕捉局部特征和上下文依赖关系 | 未提及模型在真实临床环境中的表现或泛化能力 | 提高抗血管生成肽的预测准确性,以支持肿瘤治疗 | 抗血管生成肽(AAPs) | machine learning | tumor | ProtBERT, ESM-2, BiLSTM, TextCNN | DeepTree-AAPred (binary tree-based deep learning model) | protein sequence data | 标准数据集(具体数量未提及) |
444 | 2025-05-12 |
Role of artificial intelligence in data-centric additive manufacturing processes for biomedical applications
2025-Jun, Journal of the mechanical behavior of biomedical materials
IF:3.3Q3
DOI:10.1016/j.jmbbm.2025.106949
PMID:40036906
|
review | 本文综述了人工智能在生物医学应用中数据驱动的增材制造过程中的作用 | 探讨了AI在增材制造预处理、打印过程和后处理中的应用潜力,特别是在满足个性化医疗需求方面 | 未提及具体的技术实施限制或数据可用性问题 | 探索AI如何优化增材制造全流程以提升生物医学产品的个性化适配性 | 增材制造流程(预处理、打印、后处理)及生物医学产品(组织工程、假体、芯片器官等) | machine learning | NA | 监督学习、无监督学习、深度学习、强化学习 | NA | 制造参数、结构设计数据、材料特性数据 | NA |
445 | 2025-05-12 |
Incorporating radiomic MRI models for presurgical response assessment in patients with early breast cancer undergoing neoadjuvant systemic therapy: Collaborative insights from breast oncologists and radiologists
2025-Jun, Critical reviews in oncology/hematology
DOI:10.1016/j.critrevonc.2025.104681
PMID:40058742
|
review | 探讨放射组学MRI模型在早期乳腺癌患者新辅助系统治疗前反应评估中的应用及其临床意义 | 结合机器学习和深度学习方法提高放射组学MRI的准确性和预测能力 | 放射科医生的评估具有定性和主观性,可能不足以决定是否放弃额外的局部治疗措施 | 提高早期乳腺癌患者新辅助治疗前反应评估的准确性 | 早期乳腺癌患者 | digital pathology | breast cancer | MRI, machine learning, deep learning | NA | image | NA |
446 | 2025-05-12 |
Comparison of deep learning models for facial attractiveness assessment on 3D photos
2025-Jun, Journal of dentistry
IF:4.8Q1
DOI:10.1016/j.jdent.2025.105735
PMID:40199417
|
研究论文 | 本研究比较了几种著名的CNN模型在中国6-18岁正畸患者面部吸引力评估中的准确性和精确性 | 首次在3D照片上比较了多种CNN模型在面部吸引力评估中的表现,并分析了模型准确性与训练效率之间的权衡 | 研究仅针对中国6-18岁正畸患者,样本多样性可能有限 | 评估不同CNN模型在面部吸引力评估中的性能 | 中国6-18岁正畸患者的面部3D照片 | 计算机视觉 | 正畸 | 3D摄影 | CNN (包括ResNet18, ResNet50, ResNet101, VGG-16, VGG-19, Inception-v3, MobileNet-v2, DenseNet121) | 3D照片转换的2D RGB图像 | 1272名患者的3D照片 |
447 | 2025-05-12 |
SapFlower: an automated tool for sap flow data preprocessing, gap-filling, and analysis using deep learning
2025-Jun, The New phytologist
DOI:10.1111/nph.70107
PMID:40200603
|
research paper | 介绍了一个名为SapFlower的自动化工具,用于处理、填补和分析植物液流数据 | 整合了自动清洗、机器学习和深度学习模型,能够高效处理液流数据中的噪声和缺失值 | 未来需要针对不同树种进行特定校正,并支持更多测量方法 | 提高植物液流数据处理的效率和可访问性 | 植物液流数据 | machine learning | NA | thermal dissipation probes (TDP) | random forest, Gaussian process regression, LSTM, BiLSTM | sap flow data | NA |
448 | 2025-05-12 |
ChatIOS: Improving automatic 3-dimensional tooth segmentation via GPT-4V and multimodal pre-training
2025-Jun, Journal of dentistry
IF:4.8Q1
DOI:10.1016/j.jdent.2025.105755
PMID:40228651
|
research paper | 提出了一种结合GPT-4V和多模态预训练技术的框架ChatIOS,用于提升3D牙齿分割的深度学习算法性能 | 首次将GPT-4V应用于数字牙科领域,并开创了多模态预训练范式用于3D牙齿分割 | 研究仅基于Teeth3DS数据集,未在其他数据集上验证模型的泛化能力 | 提升3D牙齿分割的准确性和效率,以支持临床正畸和修复治疗 | 口腔内扫描仪(IOS)产生的3D牙齿扫描数据 | digital pathology | NA | multimodal pre-training, GPT-4V | PointNet++ | 3D point clouds, 2D images, text descriptions | 1800个口腔内扫描数据,约24000颗标注牙齿(训练集:1200扫描,16004牙齿;测试集:600扫描,7995牙齿),来自900名患者 |
449 | 2025-05-12 |
Predicting lung cancer bone metastasis using CT and pathological imaging with a Swin Transformer model
2025-Jun, Journal of bone oncology
IF:3.1Q2
DOI:10.1016/j.jbo.2025.100681
PMID:40342492
|
research paper | 开发了一种基于Swin Transformer的多模态深度学习模型,用于通过整合CT成像和病理数据预测肺癌患者的骨转移风险 | 首次将Swin Transformer模型应用于多模态(CT和病理图像)数据融合,以预测肺癌骨转移风险 | 样本量相对较小(215例患者),且未提及外部验证集的结果 | 早期预测肺癌患者的骨转移风险,以实现及时干预并改善患者预后 | 215例确诊肺癌患者(包括有和无骨转移的患者) | digital pathology | lung cancer | CT成像和数字化组织病理学成像 | Swin Transformer | image | 215例肺癌患者 |
450 | 2025-05-11 |
Food-derived DPP4 inhibitors: Drug discovery based on high-throughput virtual screening and deep learning
2025-Jun-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.143505
PMID:40015027
|
研究论文 | 本研究通过高通量虚拟筛选和深度学习技术,从食物来源中开发了六种改良化合物,作为治疗2型糖尿病的潜在候选药物 | 结合虚拟筛选、深度学习算法、ADMET特性评估和分子动力学模拟,发现并改良了六种食物来源的DPP-4抑制剂 | 未提及临床试验结果,仅进行了体外和计算机模拟评估 | 发现新型食物来源的DPP-4抑制剂用于治疗2型糖尿病 | 六种食物来源的DPP-4抑制化合物 | 药物发现 | 2型糖尿病 | 高通量虚拟筛选、深度学习算法、ADMET评估、分子动力学模拟 | 深度学习模型 | 化学化合物数据 | 六种化合物 |
451 | 2025-05-11 |
A bioinspired microbial taste chip with artificial intelligence-enabled high selectivity and ultra-short response time
2025-Jun-01, Biosensors & bioelectronics
IF:10.7Q1
DOI:10.1016/j.bios.2025.117264
PMID:39987654
|
研究论文 | 本文介绍了一种受生物启发的无线微流控微生物味觉芯片,结合人工智能技术,实现了高选择性和超短响应时间,用于实时水污染监测 | 利用基于GRU的深度学习算法,实现了对Cu、Pb和Cr的高达98.9%的分类准确率,响应时间缩短至48秒,比之前报道的最快速度提高了3.75倍 | 目前仅针对Cu、Pb和Cr三种重金属离子进行了验证,尚未扩展到其他污染物 | 解决微生物味觉芯片在选择性方面的挑战,并缩短响应时间,以实现更高效的实时水污染监测 | 水中的重金属离子(Cu、Pb、Cr) | 人工智能与传感器技术 | NA | 微流控技术、GRU深度学习算法 | GRU | 时间序列电流数据 | NA |
452 | 2025-05-11 |
Learning from leading indicators to predict long-term dynamics of hourly electricity generation from multiple resources
2025-Jun, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107268
PMID:39987713
|
研究论文 | 该研究通过识别电网中的领先指标,提出了一种新的深度学习模型ALI-GRU,用于长期(长达一个月)协作电力发电预测 | 提出了ALI-GC模型用于全局能源源交互的综合建模,以及ALI-GRU模型用于长期电力发电预测,并在大规模实时预测场景中表现出强适应性 | 未提及具体局限性 | 通过长期预测多资源和多区域的电力发电,帮助实现电力平衡并为目标调整创造足够的缓冲 | 美国2018年至2024年的区域级每小时电力发电数据 | 机器学习 | NA | 深度学习 | ALI-GRU, GRU | 时间序列数据 | 美国2018年至2024年的区域级每小时电力发电数据 |
453 | 2025-05-11 |
Taylor-dingo optimized RP-net for segmentation toward Alzheimer's disease detection and classification using deep learning
2025-Jun, Computational biology and chemistry
IF:2.6Q2
|
research paper | 提出了一种名为RP-Net_TaylorDOX-based DNFN的新方法,用于通过深度学习对阿尔茨海默病进行检测和分类 | 结合了泰勒级数和Dingo优化器开发了泰勒Dingo优化器(TaylorDOX),用于优化RP-Net的参数,并利用深度卷积神经网络(DCNN)和深度神经模糊网络(DNFN)进行AD检测和严重程度分类 | 未提及样本来源的具体细节或数据集的多样性 | 通过深度学习提高阿尔茨海默病的诊断和分类准确性 | 阿尔茨海默病患者的大脑图像 | digital pathology | geriatric disease | deep learning, image segmentation, feature extraction, data augmentation | RP-Net, DCNN, DNFN | image | NA |
454 | 2025-05-11 |
Fragment-level feature fusion method using retrosynthetic fragmentation algorithm for molecular property prediction
2025-Jun, Journal of molecular graphics & modelling
IF:2.7Q2
DOI:10.1016/j.jmgm.2025.108985
PMID:40009893
|
research paper | 提出了一种基于逆合成碎片算法的片段级特征融合方法(RFA-FFM),用于分子性质预测 | RFA-FFM通过整合多视角分子表示,对比两种逆合成方法生成的片段化学信息,并在分子层次结构的不同级别融合化学信息,从而提升分子性质预测的准确性 | 当前方法可能仍无法完全捕捉分子的所有复杂特性,且实验仅在有限的数据集上进行了验证 | 提高分子性质(如毒性和血脑屏障通透性)的预测准确性,以加速药物开发 | 分子及其片段 | machine learning | hepatitis B | graph contrastive learning (GCL), self-supervised learning (SSL) | RFA-FFM | molecular graphs | 四个分类基准数据集和乙型肝炎病毒数据集 |
455 | 2025-05-11 |
A novel deep learning model combining 3DCNN-CapsNet and hierarchical attention mechanism for EEG emotion recognition
2025-Jun, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107267
PMID:40010290
|
研究论文 | 提出了一种结合3DCNN-CapsNet和分层注意力机制的新型深度学习模型HA-CapsNet,用于EEG情绪识别 | 首次将3DCNN-CapsNet与分层注意力机制结合,同时捕捉通道间相关性和各频段贡献,胶囊网络相比传统CNN能提取更多空间特征信息 | 未提及模型在实时性方面的表现以及在更广泛EEG数据集上的泛化能力 | 提升EEG信号情绪识别的准确性和鲁棒性 | 人类EEG信号 | 机器学习 | NA | 深度学习 | 3DCNN-CapsNet结合分层注意力机制 | EEG信号 | DEAP和DREAMER数据集(具体数量未提及) |
456 | 2025-05-11 |
Advertising or adversarial? AdvSign: Artistic advertising sign camouflage for target physical attacking to object detector
2025-Jun, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107271
PMID:40010291
|
研究论文 | 提出一种名为AdvSign的艺术广告标志伪装方法,用于在物理环境中对目标物体检测器进行对抗攻击 | 利用艺术图案(如品牌标志和广告标志)设计对抗性广告标志,增强攻击的隐蔽性和不可追踪性 | 实验主要在模拟环境(CARLA自动驾驶模拟器)中进行,真实环境中的效果可能有所不同 | 开发一种在物理环境中对物体检测器进行对抗攻击的隐蔽且难以追踪的方法 | 物体检测器,尤其是自动驾驶场景中的目标检测模型 | 计算机视觉 | NA | 对抗训练 | YOLOv5 | 图像 | 模拟环境中的合成场景图像和真实环境中的打印AdvSign图像 |
457 | 2025-05-11 |
CNN-Transformer and Channel-Spatial Attention based network for hyperspectral image classification with few samples
2025-Jun, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107283
PMID:40010294
|
研究论文 | 提出了一种基于CNN-Transformer和通道-空间注意力的网络CTA-net,用于小样本高光谱图像分类 | 结合CNN-Transformer模块提取局部和非局部特征,并采用通道-空间注意力模块优化特征,同时提出样本扩展方案缓解样本不足问题 | 未明确提及在极端环境或特殊场景下的泛化能力 | 解决小样本条件下高光谱图像分类的难题 | 高光谱图像 | 计算机视觉 | NA | 深度学习 | CNN-Transformer混合模型 | 高光谱图像 | 多个高光谱图像数据集(未明确具体数量) |
458 | 2025-05-10 |
Non-destructive origin and ginsenoside analysis of American ginseng via NIR and deep learning
2025-Jun-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.125913
PMID:39987608
|
研究论文 | 本研究开发了一种结合近红外光谱和多任务深度学习网络MMTDL的方法,用于无损分析西洋参的产地和人参皂苷含量 | 提出了一种混合多任务深度学习网络MMTDL,结合残差网络、注意力机制和混合头网络,用于同时进行西洋参的产地溯源和人参皂苷含量预测 | 样本量相对较小,仅包含150个样本,可能影响模型的泛化能力 | 开发一种无损方法,同时识别西洋参的产地并预测其人参皂苷含量 | 西洋参 | 深度学习 | NA | 近红外光谱(NIR) | MMTDL(混合多任务深度学习网络) | 光谱数据 | 150个样本,来自四个不同产地 |
459 | 2025-05-10 |
Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth With or Without Association to Rare Diseases: Evaluation of Four Deep Learning-Based Methods
2025-Jun, Orthodontics & craniofacial research
IF:2.4Q2
DOI:10.1111/ocr.12890
PMID:39744906
|
research paper | 评估四种基于深度学习的自动牙齿分割方法在锥形束计算机断层扫描(CBCT)图像中的准确性 | 比较了三种商业化和一种开源的深度学习解决方案在牙齿分割中的表现,特别是在多颗阻生牙患者中的应用 | 研究样本量较小(20例CBCT扫描),且未来深度学习解决方案的性能无法基于当前结果预测 | 评估深度学习解决方案在自动牙齿分割中的准确性 | 多颗阻生牙患者的CBCT图像 | digital pathology | dental disease | CBCT | DL (deep learning) | image | 20例CBCT扫描(来自多颗阻生牙患者) |
460 | 2025-05-10 |
Deep Learning-Based Three-Dimensional Analysis Reveals Distinct Patterns of Condylar Remodelling After Orthognathic Surgery in Skeletal Class III Patients
2025-Jun, Orthodontics & craniofacial research
IF:2.4Q2
DOI:10.1111/ocr.12895
PMID:39754473
|
研究论文 | 本研究利用深度学习技术对骨骼III类错颌畸形患者进行下颌髁突形态变化的自动化三维分析 | 采用深度学习算法自动化CBCT图像的方向调整、配准、骨分割和标志点识别,并通过体素叠加和形状对应分析髁突重塑模式 | 样本量较小(17例患者),且为回顾性研究 | 评估骨骼III类错颌畸形患者双颌正颌手术后下颌髁突的形态变化 | 17例骨骼III类错颌畸形患者(平均年龄24.8±3.5岁) | 数字病理 | 骨骼III类错颌畸形 | CBCT扫描、深度学习算法 | 深度学习算法 | 三维医学影像 | 17例患者的术前和术后12-18个月CBCT扫描数据 |