本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
81 | 2025-07-24 |
Deep Learning-Based Models for Ventricular Segmentation in Hydrocephalus: A Systematic Review and Meta-Analysis
2025-06, World neurosurgery
IF:1.9Q2
DOI:10.1016/j.wneu.2025.124001
PMID:40306409
|
meta-analysis | 本文通过系统综述和荟萃分析评估了深度学习模型在脑积水患者心室分割中的性能 | 首次对深度学习模型在脑积水心室分割中的应用进行了系统评价和荟萃分析 | 纳入研究数量有限(24项),且不同影像模态间存在性能差异 | 评估深度学习模型在脑积水心室分割中的性能表现 | 脑积水患者的神经影像数据 | digital pathology | hydrocephalus | 深度学习 | DL-based models | MRI/CT/超声影像 | 24项研究共2911名患者 |
82 | 2025-07-23 |
AI-Powered Vocalization Analysis in Poultry: Systematic Review of Health, Behavior, and Welfare Monitoring
2025-Jun-29, Sensors (Basel, Switzerland)
DOI:10.3390/s25134058
PMID:40648313
|
综述 | 本文系统回顾了人工智能和生物声学在非侵入性家禽福利监测中的先进声学分析应用 | 从传统声学特征提取到前沿深度学习架构的转变,包括CNN、LSTM、注意力机制及自监督模型如wav2vec2和Whisper的应用 | 数据集标准化不足、评估协议不一致、算法可解释性有限,以及跨物种领域泛化和上下文声学适应方面的知识缺口 | 探讨人工智能和生物声学在家禽福利监测中的应用及其潜力 | 家禽的声学数据 | 自然语言处理 | NA | MFCCs、谱熵、声谱图、深度学习 | CNN、LSTM、注意力机制、wav2vec2、Whisper | 声学数据 | NA |
83 | 2025-07-23 |
A Comprehensive Methodological Survey of Human Activity Recognition Across Diverse Data Modalities
2025-Jun-27, Sensors (Basel, Switzerland)
DOI:10.3390/s25134028
PMID:40648284
|
综述 | 本文对2014年至2025年间基于多种数据模态的人类活动识别(HAR)技术进行了全面调查,重点关注机器学习和深度学习方法 | 涵盖了单模态和多模态技术,强调了基于融合和共同学习的框架,并提供了对最新HAR系统的详细数据集描述和比较结果 | 仅包括以英语发表的同行评议研究论文,可能忽略了其他语言的重要研究 | 调查和总结人类活动识别领域的最新进展 | 人类活动识别系统及其应用 | 计算机视觉 | NA | 机器学习(ML)和深度学习(DL) | NA | RGB图像和视频、骨架、深度、红外、点云、事件流、音频、加速度和雷达信号 | NA |
84 | 2025-07-23 |
Towards Predictive Communication: The Fusion of Large Language Models and Brain-Computer Interface
2025-Jun-26, Sensors (Basel, Switzerland)
DOI:10.3390/s25133987
PMID:40648241
|
观点文章 | 探讨非侵入性脑机接口(BCI)拼写器与大型语言模型(LLMs)的融合,以提升运动或语言障碍患者的预测性沟通能力 | 结合大型语言模型与脑机接口技术,探索预测性沟通的新方法 | 实时处理、噪声鲁棒性以及神经解码输出与概率语言生成框架的整合仍面临挑战 | 提升脑机接口技术在沟通辅助中的速度和可用性 | 运动或语言障碍患者 | 脑机接口 | 运动或语言障碍 | 非侵入性脑机接口(BCI)拼写器 | 大型语言模型(LLMs) | 神经信号与文本数据 | NA |
85 | 2025-07-23 |
Deep learning-quantified body composition from positron emission tomography/computed tomography and cardiovascular outcomes: a multicentre study
2025-Jun-23, European heart journal
IF:37.6Q1
DOI:10.1093/eurheartj/ehaf131
PMID:40159388
|
研究论文 | 本研究结合深度学习和图像处理技术,从PET/CT扫描中自动量化身体组织成分,并评估其与死亡或心肌梗死的关联 | 首次利用深度学习从标准心脏PET/CT中快速自动获取体积身体组织成分,为医生提供详细的定量评估 | 研究仅基于三个中心的患者数据,可能无法完全代表所有人群 | 评估身体组织成分与心血管结局的关联 | 10,085名接受PET MPI检查的患者 | 数字病理学 | 心血管疾病 | PET/CT心肌灌注成像 | 深度学习 | 医学影像 | 10,085名患者(中位年龄68岁,57%为男性) |
86 | 2025-07-23 |
Synergizing Attribute-Guided Latent Space Exploration (AGLSE) with Classical Molecular Simulations to Design Potent Pep-Magnet Peptide Inhibitors to Abrogate SARS-CoV-2 Host Cell Entry
2025-06-07, Viruses
DOI:10.3390/v17060828
PMID:40573419
|
研究论文 | 本研究结合属性引导的潜在空间探索(AGLSE)与经典分子模拟,设计出强效的Pep-Magnet肽抑制剂以阻断SARS-CoV-2进入宿主细胞 | 利用生成式深度学习算法(VAE和WAE)生成具有抗病毒活性的新型肽序列,并通过分子对接和动力学模拟验证其结合亲和力与稳定性 | 研究仅通过计算模拟验证肽抑制剂的潜力,缺乏体外或体内实验验证 | 设计新型肽抑制剂以阻断SARS-CoV-2进入宿主细胞,为未来大流行提供新的治疗策略 | SARS-CoV-2病毒及其宿主细胞 | 机器学习 | COVID-19 | VAE, WAE, 分子对接, 分子动力学模拟 | VAE, WAE | 肽序列数据 | 200个生成的肽序列,其中4个(MSK-1至MSK-4)进行了详细分析 |
87 | 2025-07-23 |
Predicting drug-target interactions using machine learning with improved data balancing and feature engineering
2025-Jun-03, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03932-6
PMID:40461636
|
研究论文 | 本研究提出了一种结合机器学习和深度学习的混合框架,用于预测药物-靶标相互作用,解决了数据不平衡和生化表示复杂性的问题 | 引入了结合MACCS键和氨基酸/二肽组成的双重特征提取方法,以及使用GAN生成合成数据以解决数据不平衡问题 | 未明确提及具体局限性,但可能涉及模型在更广泛数据集上的泛化能力 | 改进药物-靶标相互作用(DTI)的预测准确性 | 药物-靶标相互作用数据 | 机器学习 | NA | MACCS键、氨基酸/二肽组成特征提取 | GAN、随机森林分类器(RFC) | 生化数据 | BindingDB-Kd、BindingDB-Ki和BindingDB-IC50数据集 |
88 | 2025-07-23 |
A longitudinal observational study with ecological momentary assessment and deep learning to predict non-prescribed opioid use, treatment retention, and medication nonadherence among persons receiving medication treatment for opioid use disorder
2025-Jun, Journal of substance use and addiction treatment
DOI:10.1016/j.josat.2025.209685
PMID:40127869
|
研究论文 | 本研究利用生态瞬时评估(EMA)和深度学习预测接受阿片类药物使用障碍(OUD)药物治疗患者的非处方阿片类药物使用(NPOU)、药物不依从性和治疗保留情况 | 结合EMA和深度学习技术,预测OUD治疗中的关键行为结果,为个性化动态风险分析和即时适应性干预提供基础 | 样本量较小(62名成人),模型性能在不同结果间存在较大差异(AUC 0.58-0.97) | 预测OUD治疗过程中的非处方药物使用、治疗保留和药物依从性,以改善治疗效果 | 接受阿片类药物使用障碍(OUD)药物治疗的成人患者 | 机器学习 | 阿片类药物使用障碍 | 生态瞬时评估(EMA)、深度学习 | 循环深度学习模型 | EMA数据、电子健康记录(EHR) | 62名成人患者,14,322次观察 |
89 | 2025-07-23 |
Epistasis regulates genetic control of cardiac hypertrophy
2025-Jun, Nature cardiovascular research
IF:9.4Q1
DOI:10.1038/s44161-025-00656-8
PMID:40473955
|
研究论文 | 本研究开发了一种名为低信号符号迭代随机森林的方法,用于揭示心脏肥大的复杂遗传结构 | 使用深度学习和微流控单细胞形态分析技术,首次揭示了CCDC141、IGF1R、TTN和TNKS等基因间的上位相互作用对心肌细胞肥大的非加性调控 | 研究样本主要来自UK Biobank数据库,可能无法完全代表所有人群 | 探索心脏肥大的遗传调控机制,特别是上位相互作用在其中的作用 | 29,661份UK Biobank心脏磁共振图像和313个人类心脏组织的转录组数据 | 遗传学 | 心血管疾病 | 深度学习、微流控单细胞形态分析、RNA沉默 | 随机森林 | 图像、转录组数据 | 29,661份心脏磁共振图像和313个人类心脏组织样本 |
90 | 2025-07-23 |
Performance of a Chest Radiograph-based Deep Learning Model for Detecting Hepatic Steatosis
2025-Jun, Radiology. Cardiothoracic imaging
DOI:10.1148/ryct.240402
PMID:40539916
|
研究论文 | 开发并评估了一种基于胸部X光片的深度学习模型,用于检测肝脂肪变性 | 利用胸部X光片而非传统方法检测肝脂肪变性,展示了深度学习在非传统影像数据上的应用潜力 | 研究为回顾性设计,可能受限于数据收集的偏差;外部验证集的性能略低于内部测试集 | 探索深度学习模型在利用胸部X光片检测肝脂肪变性方面的性能 | 接受过控制衰减参数(CAP)检查的患者胸部X光片 | 数字病理学 | 肝脂肪变性 | 控制衰减参数(CAP) | 深度学习模型 | 胸部X光片 | 6599张X光片,来自4414名患者(内部测试集529张/363人,外部测试集1100张/783人) |
91 | 2025-07-22 |
Multicenter Evaluation of Interpretable AI for Coronary Artery Disease Diagnosis from PET Biomarkers
2025-Jun-30, medRxiv : the preprint server for health sciences
DOI:10.1101/2025.06.19.25329944
PMID:40630571
|
研究论文 | 开发了一种整合临床PET MPI参数的人工智能模型,用于提高阻塞性冠状动脉疾病(CAD)的诊断准确性 | 首次将多种PET MPI成像生物标志物整合到AI模型中,提供自动化和可解释的CAD诊断预测 | 研究为回顾性设计,且仅纳入无既往CAD病史的患者 | 提高冠状动脉疾病的诊断准确性 | 冠状动脉疾病患者 | 数字病理学 | 心血管疾病 | PET/CT心肌灌注成像 | XGBoost | 医学影像 | 1,664名接受心脏PET/CT检查的患者(训练集386例,外部测试集1,278例) |
92 | 2025-07-22 |
YOLOv8-DuckPluck: A lightweight target detection model for cherry valley duck feather pecking site detection
2025-Jun-26, Poultry science
IF:3.8Q1
DOI:10.1016/j.psj.2025.105484
PMID:40618564
|
研究论文 | 提出了一种基于YOLOv8的轻量级目标检测模型YOLOv8-DuckPluck,用于樱桃谷鸭羽毛啄食部位的检测 | 集成了新型轻量级多尺度特征提取模块NeoMSM-C2f,采用DyHead作为检测头,并应用知识蒸馏技术提升模型性能 | 未提及模型在其他家禽啄食行为检测中的泛化能力 | 开发高效准确的樱桃谷鸭羽毛啄食部位检测模型,满足现代精准畜牧业需求 | 樱桃谷鸭的羽毛啄食行为 | 计算机视觉 | NA | 知识蒸馏 | YOLOv8 | 图像 | 未明确说明样本数量 |
93 | 2025-07-22 |
High-definition motion-resolved MRI using 3D radial kooshball acquisition and deep learning spatial-temporal 4D reconstruction
2025-Jun-17, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ade195
PMID:40472864
|
研究论文 | 开发一种结合3D径向kooshball采集和时空深度学习4D重建技术的自由呼吸高清(HD)肺部MRI方法,实现1.1毫米各向同性分辨率和扫描时间少于5分钟 | 提出两种高清Movienet (HD-Movienet)深度学习模型用于3D径向kooshball数据重建,显著缩短重建时间并保持图像质量 | 3D-based HD-Movienet虽然提高了重建质量,但重建时间更长 | 开发快速高分辨率的自由呼吸肺部MRI技术 | 八名健康志愿者和十名肺部肿瘤患者 | 医学影像 | 肺癌 | 3D径向kooshball序列采集,深度学习重建 | 2D-based HD-Movienet, 3D-based HD-Movienet | MRI影像 | 18人(8名健康志愿者和10名患者) |
94 | 2025-07-22 |
Efficiency of oral keratinized gingiva detection and measurement based on convolutional neural network
2025-Jun, Journal of periodontology
IF:4.2Q1
DOI:10.1002/JPER.24-0151
PMID:39007745
|
research paper | 本研究评估了不同卷积神经网络(CNN)在深度学习算法中检测和测量口腔内角化牙龈的效率 | 使用ResNet50模型自动分割角化牙龈,准确率达到91.4%,并与临床医生的测量结果高度一致 | 测量结果受测量操作者、表型和颌骨类型的影响,存在统计学显著差异 | 评估CNN在角化牙龈检测和测量中的性能 | 口腔内角化牙龈 | computer vision | NA | CNN | ResNet50 | image | 600张口腔内照片(来自1200张照片) |
95 | 2025-07-21 |
Topo-CNN: Retinal Image Analysis with Topological Deep Learning
2025-Jun-25, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01575-7
PMID:40563040
|
研究论文 | 提出了一种基于拓扑深度学习的视网膜图像分析框架Topo-CNN,用于自动化和可解释的视网膜疾病诊断 | 结合拓扑数据分析(TDA)提取几何和结构特征,并与预训练的CNN特征融合,形成混合深度模型Topo-CNN | 未提及模型在不同医疗设备或临床环境中的泛化能力 | 提高视网膜疾病(如糖尿病视网膜病变、青光眼和年龄相关性黄斑变性)的自动诊断性能 | 视网膜图像 | 数字病理 | 糖尿病视网膜病变、青光眼、年龄相关性黄斑变性 | Topological Data Analysis (TDA), CNN | Topo-CNN (基于ResNet-50的混合模型) | 图像 | 三个基准数据集:APTOS(二分类和五分类糖尿病视网膜病变)、ORIGA(青光眼)、IChallenge-AMD(年龄相关性黄斑变性) |
96 | 2025-07-21 |
Region-based U-nets for fast, accurate, and scalable deep brain segmentation: Application to Parkinson Plus Syndromes
2025-Jun-24, NeuroImage. Clinical
DOI:10.1016/j.nicl.2025.103807
PMID:40592210
|
研究论文 | 本文介绍了一种基于区域U-net的深度学习方法,用于快速、准确且可扩展的深部脑结构分割,特别针对帕金森叠加综合征 | 通过将脑图像分割为围绕脑干、脑室系统和纹状体的目标区域,优化GPU使用并显著减少训练时间,同时保持高准确性 | 未明确提及具体限制,但可能受限于数据集的大小和多样性 | 开发一种高效的深度学习方法,用于早期诊断与年龄相关的神经退行性疾病 | 12个与帕金森叠加综合征相关的深部脑结构 | 数字病理学 | 帕金森叠加综合征 | MRI分割 | U-net | 图像 | 包括660名受试者的临床数据集,涵盖健康对照组和各种运动障碍患者 |
97 | 2025-07-21 |
Attention-Based Whole-Slide Image Compression Achieves Pathologist-Level Prescreening of Multiorgan Routine Histopathology Biopsies
2025-Jun-23, Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
IF:7.1Q1
DOI:10.1016/j.modpat.2025.100827
PMID:40562215
|
research paper | 该研究提出了一种基于注意力机制的全切片图像压缩方法NIC-A,用于多器官常规组织病理活检的病理学家级别预筛查 | 引入了slide packing方法,将同一组织块的多张切片合并为单个图像,并利用弱监督深度学习实现无需手动标注的全切片图像分类 | 仅在2个欧洲中心的队列中进行了验证,需要更多外部验证 | 开发自动化癌症检测方法以减轻病理学家在常规数字病理诊断中的工作量 | 结肠和宫颈组织切片以及十二指肠活检 | digital pathology | colorectal cancer, cervical cancer, celiac disease | weakly supervised deep learning | NIC-A (Neural Image Compression with Attention) | whole-slide images | 12,580张全切片图像,来自9,141个组织块 |
98 | 2025-07-21 |
Referenceless 4D flow cardiovascular magnetic resonance with deep learning
2025-Jun-02, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
IF:4.2Q1
DOI:10.1016/j.jocmr.2025.101920
PMID:40467036
|
研究论文 | 本研究利用深度学习预测心血管4D流动磁共振成像中的参考编码,以减少扫描时间 | 提出了一种无需参考编码的4D流动心血管磁共振成像方法,通过深度学习预测参考编码,减少了25%的数据采集量 | 在左心室和右心室的总湍流动能计算中误差较大,最高达到-77.17%和24.96% | 提高心血管疾病评估效率,减少4D流动磁共振成像的扫描时间 | 126名患有不同类型心肌病的患者 | 医学影像分析 | 心血管疾病 | 4D流动心血管磁共振成像(4D flow CMR) | U-NetADV, U-NetVEL | 三维速度数据 | 126名患者(113名用于训练,13名用于测试) |
99 | 2025-07-21 |
SAFFusion: a saliency-aware frequency fusion network for multimodal medical image fusion
2025-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.555458
PMID:40677382
|
研究论文 | 提出了一种基于显著性感知的频率融合网络SAFFusion,用于多模态医学图像融合 | 引入Mamba-UNet多尺度编码器-解码器架构,结合轮廓波变换和双分支频率特征融合模块,以及潜在低秩表示(LatLRR)评估图像显著性 | 未明确提及具体局限性 | 提升多模态医学图像融合效果,为阿尔茨海默病诊断和脑肿瘤检测与分割等临床决策提供更全面的参考 | 多模态医学图像(CT/MRI、SPECT/MRI、PET/MRI) | 数字病理学 | 阿尔茨海默病、脑肿瘤 | 轮廓波变换、潜在低秩表示(LatLRR) | Mamba-UNet | 医学图像 | 未明确提及具体样本量 |
100 | 2025-07-21 |
Deep learning for the detection of colon polyps with malignant potential: ex vivo classification using feature-enhanced optical coherence tomography (OCT) images
2025-Jun-01, Biomedical optics express
IF:2.9Q2
DOI:10.1364/BOE.555185
PMID:40677387
|
研究论文 | 本研究提出了一种基于深度学习的框架,利用特征增强的光学相干断层扫描(OCT)图像对具有恶性潜能的结肠息肉进行离体分类 | 通过提取OCT图像中的额外特征作为疾病生物标志物,并结合深度学习分类模型进行决策级融合,提高了分类准确性 | 研究使用的是离体样本,尚未在临床环境中验证 | 提高结肠息肉恶性潜能检测的准确性,优化结直肠癌筛查效果 | 结肠息肉(包括正常、增生性、腺瘤和无蒂锯齿状腺瘤) | 数字病理学 | 结直肠癌 | 光学相干断层扫描(OCT) | 深度学习分类模型 | OCT图像 | NA |