本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1081 | 2025-06-06 |
Image classification-driven speech disorder detection using deep learning technique
2025-Jun, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100261
PMID:40057233
|
研究论文 | 本研究提出了一种基于图像分类的自动语音障碍检测模型,通过Mel-Spectrogram分类识别多种语音障碍 | 使用增强的LEVIT transformer进行特征提取,并采用包含CatBoost和XGBoost的集成学习方法进行分类,同时利用量化感知训练减少计算资源 | 模型在多语言和方言中的适用性有待进一步验证,且需要更多样化的数据集进行泛化 | 开发一种自动化的语音障碍检测模型,以提高诊断的准确性和效率 | 语音障碍患者 | 自然语言处理 | 语音障碍 | Wavelet Transform (WT), 量化感知训练 (QAT) | LEVIT transformer, CatBoost, XGBoost, Extremely Randomized Tree | Mel-Spectrogram图像 | VOICED和LANNA数据集 |
1082 | 2025-06-06 |
Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer
2025-Jun, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100264
PMID:40057234
|
研究论文 | 本研究旨在开发一种基于自然语言处理(NLP)的预测建模框架,用于胃肠道癌症的个性化治疗策略 | 提出了Resilient Adam Algorithm驱动的Versatile Long-Short Term Memory (RAA-VLSTM)模型,用于分析临床数据,并通过RAA优化算法显著提高了训练效率 | 未提及具体的数据集规模限制或模型在其他癌症类型中的泛化能力 | 开发一种先进的NLP驱动预测建模框架,以改善胃肠道癌症的个性化治疗策略 | 胃肠道癌症患者的电子健康记录(EHRs) | 自然语言处理 | 胃肠道癌症 | NLP, 深度学习 | RAA-VLSTM | 文本(电子健康记录) | 来自多个医疗中心的广泛电子健康记录(具体数量未提及) |
1083 | 2025-06-06 |
The application of natural language processing technology in hospital network information management systems: Potential for improving diagnostic accuracy and efficiency
2025-Jun, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100287
PMID:40254184
|
研究论文 | 本文探讨了自然语言处理技术在医院网络信息管理系统中的应用,以提高诊断效率和准确性 | 提出了一种新颖的隐藏贝叶斯集成密集Bi-LSTM(HB-DBi-LSTM)策略,用于优化词袋模型 | 未提及具体样本量及数据来源的多样性限制 | 研究自然语言处理技术在医院网络信息管理系统中的应用潜力 | 电子健康记录中的扫描文档 | 自然语言处理 | 睡眠问题 | NLP, OCR, 图像预处理 | HB-DBi-LSTM, BoW | 扫描PDF图像 | NA |
1084 | 2025-06-06 |
Advancing Intracranial Aneurysm Detection: A Comprehensive Systematic Review and Meta-analysis of Deep Learning Models Performance, Clinical Integration, and Future Directions
2025-Jun, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
IF:1.9Q4
DOI:10.1016/j.jocn.2025.111243
PMID:40306254
|
meta-analysis | 本文通过系统综述和荟萃分析评估了深度学习模型在颅内动脉瘤检测中的性能及其对临床诊断的辅助作用 | 深度学习模型在颅内动脉瘤检测中展现出超越传统临床诊断的敏感性和特异性,并能显著提升临床医生的诊断一致性和准确性 | 需要在更多样化的临床环境中进行进一步验证,并实现与标准工作流程的无缝集成 | 评估深度学习模型在颅内动脉瘤检测中的性能及其临床应用价值 | 颅内动脉瘤的检测和预测 | digital pathology | cardiovascular disease | CT angiography (CTA), digital subtraction angiography (DSA), time-of-flight MR angiography (TOF-MRA) | DL (Deep Learning) | image | NA |
1085 | 2025-06-06 |
A deployment safety case for AI-assisted prostate cancer diagnosis
2025-Jun, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110237
PMID:40345136
|
research paper | 本文探讨了AI辅助前列腺癌诊断系统的部署安全性问题,并提出了一种持续保障系统安全的方法 | 基于ARTICULATE PRO项目的前瞻性研究经验,提出了一种部署安全案例,用于持续监控已获监管批准的AI系统的安全性 | 研究主要基于英国医院的实践经验,可能在其他地区的适用性有限 | 解决AI辅助前列腺癌诊断系统在部署过程中可能出现的新危险事件,并持续保障其安全性 | AI辅助前列腺癌诊断系统 | digital pathology | prostate cancer | deep learning | NA | NA | NA |
1086 | 2025-06-06 |
Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design
2025-Jun, Current opinion in biotechnology
IF:7.1Q1
DOI:10.1016/j.copbio.2025.103315
PMID:40347686
|
review | 本文系统分析了糖基转移酶在人类母乳寡糖合成中的结构机制和理性设计 | 综述了糖基转移酶的结构生物学,通过晶体学研究阐明了保守域和催化机制,并总结了当代优化策略,包括溶解度增强、催化效率提升和底物特异性工程 | 未提及具体实验数据或样本量,可能缺乏实证支持 | 探讨糖基转移酶在人类母乳寡糖合成中的结构机制和理性设计 | 糖基转移酶和人类母乳寡糖 | 合成生物学 | NA | 晶体学研究和深度学习算法 | NA | 结构生物学数据 | NA |
1087 | 2025-06-06 |
CirnetamorNet: An ultrasonic temperature measurement network for microwave hyperthermia based on deep learning
2025-Jun, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100297
PMID:40350037
|
研究论文 | 提出了一种基于深度学习的超声波温度测量网络CirnetamorNet,用于微波热疗中的非侵入性温度监测 | 通过多头注意力机制高效整合多特征数据,提高了非侵入性测温技术的准确性和可靠性 | 实验数据采集系统使用模拟人体组织特性的材料构建,可能与真实人体组织存在差异 | 实现微波热疗过程中准确的非侵入性温度预测 | 微波热疗中的温度监测 | 数字病理 | 癌症 | 超声波成像 | RNN, 多头注意力机制 | 图像 | NA |
1088 | 2025-06-06 |
Catalytic mechanism and engineering of aromatic prenyltransferase: A review
2025-Jun, International journal of biological macromolecules
IF:7.7Q1
DOI:10.1016/j.ijbiomac.2025.144214
PMID:40379159
|
综述 | 本文系统总结了芳香族异戊二烯基转移酶的催化机制和工程化研究进展,并探讨了当前挑战和未来研究方向 | 提出了结合人工智能和深度学习的创新工程化方法,以开发高性能生物催化剂 | 当前面临的挑战包括催化活性不足、底物特异性狭窄以及多酶级联系统和固定化技术的限制 | 指导芳香族异戊二烯基转移酶在合成生物学和药物创新中的工程化与规模化应用 | 芳香族异戊二烯基转移酶及其催化机制 | 合成生物学 | NA | 蛋白质工程、人工智能、深度学习 | NA | NA | NA |
1089 | 2025-06-06 |
ML-Driven Alzheimer's disease prediction: A deep ensemble modeling approach
2025-Jun, SLAS technology
IF:2.5Q3
DOI:10.1016/j.slast.2025.100298
PMID:40389063
|
research paper | 该研究提出了一种结合五种深度学习架构的集成学习框架,用于提高阿尔茨海默病诊断的准确性 | 使用五种深度学习架构(VGG16、VGG19、ResNet50、InceptionV3和EfficientNetB7)的集成学习框架,显著提高了诊断准确性 | 研究主要基于伊拉克专科诊所的数据,可能在其他地区或人群中的适用性有待验证 | 提高阿尔茨海默病的早期和准确检测 | MRI脑扫描图像 | digital pathology | geriatric disease | deep learning | ensemble model (VGG16, VGG19, ResNet50, InceptionV3, EfficientNetB7) | image | 3,714 MRI脑扫描图像(834 NonDemented, 1,824 MildDemented, 1,056 VeryDemented) |
1090 | 2025-06-06 |
Prediction of pathological grade of oral squamous cell carcinoma and construction of prognostic model based on deep learning algorithm
2025-Jun-01, Discover oncology
IF:2.8Q2
DOI:10.1007/s12672-025-02144-8
PMID:40450613
|
研究论文 | 本研究旨在基于全切片图像(WSIs)建立深度学习模型,用于预测口腔鳞状细胞癌(OSCC)的病理分级 | 使用CLAM算法构建的深度学习模型在训练集和外部验证集中表现出良好的预测效率和泛化能力,并结合转录组数据构建了OSCC的预后风险模型 | 外部验证集的AUC(0.71)低于训练集(0.86),表明模型在外部数据上的性能有待提高 | 预测口腔鳞状细胞癌的病理分级并构建预后模型 | 口腔鳞状细胞癌(OSCC)患者 | 数字病理学 | 口腔鳞状细胞癌 | 深度学习算法 | CLAM算法 | 全切片图像(WSIs)和转录组数据 | 257例OSCC患者的组织病理学图像(来自TCGA数据库)和165例OSCC病理切片(来自CPTAC数据库) |
1091 | 2025-06-06 |
Deep learning driven interpretable and informed decision making model for brain tumour prediction using explainable AI
2025-Jun-01, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-03358-0
PMID:40451921
|
研究论文 | 本研究提出了一种结合深度学习和可解释AI(XAI)的模型,用于准确且可解释的脑肿瘤预测 | 结合深度学习和XAI,提供模型预测的可解释性,帮助临床医生理解决策过程 | 模型可能仍存在某些复杂病例的预测困难,且依赖于大量影像和临床数据 | 开发一个可解释的脑肿瘤预测模型,以提高诊断准确性和临床信任度 | 脑肿瘤患者 | 数字病理学 | 脑肿瘤 | MRI和CT扫描 | 深度学习模型 | 影像和临床数据 | 广泛的数据集(具体数量未提及) |
1092 | 2025-06-06 |
Extracerebral Normalization of 18F-FDG PET Imaging Combined with Behavioral CRS-R Scores Predict Recovery from Disorders of Consciousness
2025-Jun, Neurocritical care
IF:3.1Q2
DOI:10.1007/s12028-024-02142-8
PMID:39532777
|
研究论文 | 本研究开发了一种基于18F-FDG PET和行为CRS-R评分的预后模型,用于预测长期意识障碍患者的1年恢复情况 | 结合18F-FDG PET的脑外组织标准化和行为CRS-R评分,开发了多模态预后模型,提高了预测意识恢复的准确性 | 样本量较小(87例患者),且测试集结果显示差异无统计学意义(P=0.73) | 开发预测长期意识障碍患者恢复情况的预后模型 | 87例新诊断为长期意识障碍的患者 | 数字病理 | 神经系统疾病 | 18F-FDG PET/CT扫描 | DenseNet121 | 图像和表格数据 | 87例意识障碍患者(52例恢复意识,35例未恢复) |
1093 | 2025-06-06 |
Radiomics of PET Using Neural Networks for Prediction of Alzheimer's Disease Diagnosis
2025-Jun, Statistics in medicine
IF:1.8Q1
DOI:10.1002/sim.70128
PMID:40468810
|
研究论文 | 本文提出使用图神经网络(GNN)和变压器编码器(TE)的深度学习方法,利用纵向PET图像和认知评分预测阿尔茨海默病(AD)的诊断及从认知未受损或轻度认知障碍到AD的转化 | 首次将GNN和TE应用于纵向PET图像序列分析,提高了AD诊断预测的准确性 | 未能充分考虑访视间时间变异性的影响 | 提高阿尔茨海默病的早期诊断准确性 | 阿尔茨海默病患者及认知未受损/轻度认知障碍人群 | 数字病理学 | 阿尔茨海默病 | PET成像技术 | GNN, TE, FFN, RNN | 医学图像(PET) | ADNI研究收集的数据集 |
1094 | 2025-06-06 |
Underwater 3D measurement based on improved YOLOv8n and laser scanning imaging device
2025-Jun-01, The Review of scientific instruments
DOI:10.1063/5.0256098
PMID:40471019
|
研究论文 | 本文提出了一种名为YOLOv8-FWR的深度学习算法,结合激光扫描成像设备,有效提高了水下激光成像的效率和质量 | 引入了Focal_SPPF池化模块以减少背景噪声影响,提出了加权特征Concat模块以增强边缘小目标光条的检测,并通过结构重参数化技术优化了C2f模块,降低了模型参数数量同时提高了准确性 | NA | 提高水下激光成像的目标检测效率和准确性 | 水下激光扫描成像中的目标光条 | 计算机视觉 | NA | 激光扫描成像 | YOLOv8-FWR | 图像 | 通过模拟水下激光扫描成像过程构建的包含大量背景噪声的数据集,并在VOC2012和Underwater Detection Dataset (UDD)上进行了验证 |
1095 | 2025-06-05 |
Gesture recognition from surface electromyography signals based on the SE-DenseNet network
2025-Jun-26, Biomedizinische Technik. Biomedical engineering
DOI:10.1515/bmt-2024-0282
PMID:39873377
|
研究论文 | 本文提出了一种基于SE-DenseNet网络的手势识别方法,用于从表面肌电信号中识别手势 | 融合了Squeeze-and-Excitation Networks (SE)和DenseNet,在DenseBlock和Transition之间插入注意力机制,以提高特征表示能力并有效解决梯度消失问题 | 现有手势识别算法在全局特征捕获、模型计算复杂度和泛化能力方面仍需进一步改进 | 提供更自然、方便和个性化的人机交互,特别是在康复技术领域 | 表面肌电信号(sEMG) | 机器学习 | NA | 深度学习 | SE-DenseNet | 肌电信号 | NinaPro DB2和DB4数据集 |
1096 | 2025-06-05 |
A ViTUNeT-based model using YOLOv8 for efficient LVNC diagnosis and automatic cleaning of dataset
2025-Jun-04, Journal of integrative bioinformatics
IF:1.5Q3
DOI:10.1515/jib-2024-0048
PMID:40460443
|
研究论文 | 提出了一种基于ViTUNeT和YOLOv8的模型,用于左心室非致密化(LVNC)的高效诊断和数据集自动清理 | 结合U-Net和Vision Transformers的ViTUNeT架构,以及使用YOLOv8模型进行心室检测和数据集清理 | 数据集质量限制了进一步的准确性提升 | 改进心脏图像分析和分割方法 | 左心室非致密化患者和健康个体 | 数字病理学 | 心血管疾病 | 深度学习 | ViTUNeT, YOLOv8 | MRI图像 | 新增Titin心肌病患者和健康个体的数据集 |
1097 | 2025-06-05 |
Applications of Artificial Intelligence (AI) for Diagnosis of Periodontal/Peri-Implant Diseases: A Narrative Review
2025-Jun-04, Journal of oral rehabilitation
IF:3.1Q1
DOI:10.1111/joor.14045
PMID:40464289
|
综述 | 本文综述了人工智能(AI)在牙周病/种植体周围疾病诊断中的应用现状 | 探讨了AI在牙周病诊断中的多种应用,包括疾病分期、严重程度评估及解剖结构定位,并比较了AI模型与牙医的诊断效果 | 仅进行了叙述性综述,未进行系统性分析或荟萃分析,可能遗漏部分研究 | 总结AI在牙周病/种植体周围疾病诊断和风险预测中的应用证据 | 牙周病和种植体周围疾病 | 数字病理 | 牙周病 | AI、ANN、CNN、ML、DL、DNN | CNN、DNN | 患者相关数据、疾病症状、免疫生物标志物、微生物图谱、影像数据 | NA |
1098 | 2025-06-05 |
A review on learning-based algorithms for tractography and human brain white matter tracts recognition
2025-Jun-04, Neuroradiology
IF:2.4Q2
DOI:10.1007/s00234-025-03637-7
PMID:40464927
|
综述 | 本文综述了基于学习的算法在脑白质纤维束追踪和识别中的应用 | 扩展了先前相关综述,涵盖了最新的方法和网络细节,并通过全面比较评估了基于学习的方法的效率 | NA | 探讨基于学习的算法在脑白质纤维束追踪和识别中的应用及其效率 | 人脑白质纤维束 | 医学影像分析 | NA | 扩散磁共振成像 | 机器学习、深度学习、强化学习、字典学习 | 磁共振图像 | NA |
1099 | 2025-06-05 |
Flexible High Temperature Stable Hydrogel Based Triboelectric Nanogenerator for Structural Health Monitoring and Deep Learning Augmented Human Motion Classification
2025-Jun-04, Small (Weinheim an der Bergstrasse, Germany)
DOI:10.1002/smll.202502739
PMID:40465357
|
research paper | 该研究开发了一种基于PDMS-水凝胶纳米复合材料的摩擦电纳米发电机(TENG),用于高温环境下的结构健康监测和深度学习增强的人体运动分类 | 研发出一种具有高温稳定性的PDMS-水凝胶纳米复合材料TENG,能够在高达200°C的温度下稳定工作,适用于工业高温设备的振动能量收集 | 未提及该设备在极端高温环境下的长期稳定性测试结果 | 开发适用于高温工业环境和可穿戴设备的多功能能量收集与监测系统 | PDMS-水凝胶纳米复合材料TENG及其在工业设备和人体运动监测中的应用 | energy harvesting, structural health monitoring, human motion classification | NA | triboelectric nanogenerator (TENG), deep learning | deep learning model (具体类型未说明) | voltage waveforms | NA |
1100 | 2025-06-05 |
NMR Pure Shift Spectroscopy and Its Potential Applications in the Pharmaceutical Industry
2025-Jun-03, Chembiochem : a European journal of chemical biology
IF:2.6Q3
DOI:10.1002/cbic.202401012
PMID:40263759
|
review | 本文综述了纯位移NMR技术及其在制药行业中的潜在应用 | 介绍了纯位移技术抑制标量耦合以提高光谱分辨率的方法,并探讨了深度学习辅助获取最优纯位移光谱的方法 | NA | 促进纯位移NMR技术在制药行业的发展和实际应用 | 纯位移NMR技术及其在制药行业的应用 | NA | NA | NMR纯位移技术、深度学习 | NA | 光谱数据 | NA |