深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202506-202506] [清除筛选条件]
当前共找到 1262 篇文献,本页显示第 1241 - 1260 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1241 2025-03-22
Low-speed impact localization of wind turbine blades with a single sensor utilizing multiscale feature fusion convolutional neural networks
2025-Jun, Ultrasonics IF:3.8Q1
研究论文 本文提出了一种基于深度学习的单传感器冲击定位方法,用于风力涡轮机叶片的低速冲击定位 设计了一种多尺度特征融合卷积神经网络,并结合卷积块注意力模块,从单传感器信号中自适应提取特征,实现精确的区域级源定位 NA 开发一种用于评估和定位复合材料结构(如风力涡轮机叶片)冲击的方法 风力涡轮机叶片的低速冲击响应 机器学习 NA 完全集成经验模态分解与自适应噪声 多尺度特征融合卷积神经网络 声发射信号 钢球跌落实验模拟的风力涡轮机叶片翼梁低速冲击响应 NA NA NA NA
1242 2025-03-19
StopSpamX: A multi modal fusion approach for spam detection in social networking
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种多模态融合方法StopSpamX,用于社交网络中的垃圾信息检测 结合了多种最先进的词嵌入技术和深度学习混合融合分类器技术,包括GRU、LSTM和CNN,以提高垃圾信息检测的性能 未提及具体的数据集大小或实验环境的限制 实现一个无垃圾信息的社交网络环境 社交网络平台(如Twitter、Instagram、Youtube、Facebook、Whatsapp)上的数据 自然语言处理 NA Word2Vec, GloVe, FastText, GRU, LSTM, CNN 混合融合分类器(基于文本的分类器和组合分类器) 文本 未提及具体样本数量 NA NA NA NA
1243 2025-03-19
Prediction of lymph node metastasis in papillary thyroid carcinoma using non-contrast CT-based radiomics and deep learning with thyroid lobe segmentation: A dual-center study
2025-Jun, European journal of radiology open IF:1.8Q3
研究论文 本研究旨在通过深度学习放射组学(DLRad)和临床特征开发预测乳头状甲状腺癌(PTC)患者淋巴结转移(LNM)的模型 结合深度学习放射组学和临床特征,开发了一个新的预测模型,用于预测PTC患者的LNM,并在双中心研究中验证了其性能 研究样本量相对较小,且仅使用了非对比CT数据,可能限制了模型的泛化能力 开发并验证一个预测PTC患者LNM的模型 228名PTC患者的271个甲状腺叶 数字病理学 甲状腺癌 非对比CT 深度学习 图像 271个甲状腺叶(来自228名PTC患者) NA NA NA NA
1244 2025-03-14
"Optimizing sEMG Gesture Recognition with Stacked Autoencoder Neural Network for Bionic Hand"
2025-Jun, MethodsX IF:1.6Q2
研究论文 本研究提出了一种使用堆叠自编码器神经网络(SAE)进行表面肌电图(sEMG)手势识别的新方法 利用堆叠自编码器神经网络进行层次表示学习,从原始sEMG信号中提取有意义的特征,提高了手势分类的精度和鲁棒性 NA 优化sEMG手势识别,以增强仿生手的控制技术 表面肌电图(sEMG)信号 机器学习 NA MODWT分解(最大重叠离散小波变换) 堆叠自编码器神经网络(SAE) sEMG信号 NA NA NA NA NA
1245 2025-03-12
Optimizing multimodal scene recognition through relevant feature selection approach for scene classification
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种新颖的多模态特征提取和特征选择技术,以提高场景分类中迁移学习的效率 引入了多模态特征提取和特征选择技术,结合CNN进行特征提取,以提高模型性能和计算效率 未提及具体局限性 优化场景分类中的多模态特征提取和选择,以提高迁移学习的效率 场景分类任务 计算机视觉 NA 迁移学习,特征选择技术 CNN 图像 Scene数据集(6类)和AID数据集 NA NA NA NA
1246 2025-03-08
Kellgren-Lawrence grading of knee osteoarthritis using deep learning: Diagnostic performance with external dataset and comparison with four readers
2025-Jun, Osteoarthritis and cartilage open
研究论文 本研究评估了深度学习模型在外部数据集上对膝关节骨关节炎的Kellgren-Lawrence (KL)分级诊断性能,并与四位读者进行了比较 使用深度学习模型在外部数据集上评估膝关节骨关节炎的KL分级,并与多位人类读者进行比较,展示了深度学习在医学影像诊断中的潜力 研究样本量较小(208例膝关节X光片),且仅使用了单一外部数据集进行验证 评估深度学习模型在膝关节骨关节炎KL分级中的诊断性能 膝关节骨关节炎的X光片 计算机视觉 骨关节炎 深度学习 深度学习模型 图像 208例膝关节X光片 NA NA NA NA
1247 2025-03-05
IM- LTS: An Integrated Model for Lung Tumor Segmentation using Neural Networks and IoMT
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种集成模型IM-LTS,用于使用神经网络和医疗物联网进行肺肿瘤分割 结合了MobileNetV2和U-NET两种架构,并采用迁移学习技术,使用预训练的神经网络作为U-NET模型的编码器进行分割 未提及具体的数据集大小和样本类型,可能影响模型的泛化能力 开发一种高精度的肺肿瘤分割和分类模型,以支持早期疾病诊断 肺肿瘤 数字病理学 肺癌 深度学习,迁移学习 MobileNetV2, U-NET, 支持向量机 CT图像 NA NA NA NA NA
1248 2025-10-07
QuantumNet: An enhanced diabetic retinopathy detection model using classical deep learning-quantum transfer learning
2025-Jun, MethodsX IF:1.6Q2
研究论文 提出一种结合经典深度学习与量子迁移学习的混合模型QuantumNet,用于增强糖尿病视网膜病变检测 首次将经典深度学习模型与量子变分分类器相结合,利用量子迁移学习提升医学图像诊断性能 仅使用单一数据集进行验证,未在不同医疗中心数据上进行外部验证 开发更准确高效的糖尿病视网膜病变检测方法 糖尿病视网膜病变患者 医学影像分析 糖尿病视网膜病变 量子迁移学习 CNN, ResNet50, MobileNetV2, 量子变分分类器 眼底图像 APTOS 2019盲症检测数据集 Google Cirq CNN, ResNet50, MobileNetV2, 变分量子电路 准确率 Google Cirq量子计算平台
1249 2025-10-07
Design and structure of overlapping regions in PCA via deep learning
2025-Jun, Synthetic and systems biotechnology IF:4.4Q1
研究论文 提出基于深度学习的重叠区域设计模型,用于提高聚合酶循环组装(PCA)合成DNA片段的成功率 首次利用深度学习从大规模合成数据中识别重叠区域的潜在序列表征,并开发SmartCut算法优化寡核苷酸设计 未明确说明模型对特定类型DNA序列的适用性限制 提高基因组合成中DNA片段合成的成功率和效率 DNA序列的重叠区域设计 机器学习 NA 聚合酶循环组装(PCA) 深度学习 DNA序列数据 大规模合成数据集 NA NA AUPR NA
1250 2025-10-07
Attention-enhanced corn disease diagnosis using few-shot learning and VGG16
2025-Jun, MethodsX IF:1.6Q2
研究论文 提出一种基于注意力增强和少样本学习的玉米病害诊断方法 结合预训练VGG16网络、注意力机制和原型少样本学习,实现高精度玉米病害分类 NA 早期检测和分类玉米病害以减少农业损失 玉米病害 计算机视觉 植物病害 深度学习 CNN, Few-Shot Learning 图像 NA NA VGG16 准确率 NA
1251 2025-01-31
A multi-dimensional student performance prediction model (MSPP): An advanced framework for accurate academic classification and analysis
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种多维学生表现预测模型(MSPP),旨在通过深度学习和先进的数据预处理技术提高学生学术分类的准确性 MSPP模型结合了自适应超参数调整和先进的图神经网络层,能够处理不平衡和时间序列的教育数据集,并通过AI特征提供可解释性 NA 提高学生表现预测的准确性,以支持定制化干预措施,提升学习效果 学生学术数据 机器学习 NA 深度学习 图神经网络(GNN) 结构化训练记录 NA NA NA NA NA
1252 2025-01-31
An easy-to-use three-dimensional protein-structure-prediction online platform "DPL3D" based on deep learning algorithms
2025-Jun, Current research in structural biology IF:2.7Q3
研究论文 本文介绍了一个基于深度学习算法的易于使用的三维蛋白质结构预测在线平台DPL3D 开发了一个用户友好的平台DPL3D,能够预测和可视化突变蛋白质的三维结构,并集成了多种先进的蛋白质结构预测软件 平台依赖于现有的蛋白质晶体结构数据,对于缺乏这些数据的蛋白质,预测准确性可能受限 开发一个易于使用的在线平台,用于预测和可视化突变蛋白质的三维结构,以促进生物发现 突变蛋白质的三维结构 生物信息学 NA 深度学习算法 AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, trRosettaX-Single 蛋白质晶体结构数据 210,180个分子结构,包括52,248个人类蛋白质 NA NA NA NA
1253 2025-10-07
Deep learning driven silicon wafer defect segmentation and classification
2025-Jun, MethodsX IF:1.6Q2
研究论文 本研究开发了一种基于深度学习的硅晶圆缺陷分割与分类系统,并集成大型语言模型提供交互式缺陷分析 将深度学习缺陷分割分类与大型语言模型问答能力相结合,实现自动化检测与交互式指导的双重功能 NA 实现硅晶圆缺陷的自动化检测与分类,提高集成电路制造质量 硅晶圆上的缺陷 计算机视觉 NA 深度学习 CNN 图像 NA NA NA 平均绝对误差,均方根误差,Dice系数,交并比,准确率,精确率,召回率,F1分数 NA
1254 2025-01-25
Enhancing semantic segmentation for autonomous vehicle scene understanding in indian context using modified CANet model
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文提出了一种改进的CANet模型,用于增强自动驾驶车辆在印度复杂交通环境中的语义分割能力 提出了一种结合U-Net和LinkNet元素的改进CANet模型,引入了多尺度上下文模块(MCM)以捕捉多尺度的上下文信息 NA 提高自动驾驶车辆在复杂交通环境中的语义分割准确性 印度驾驶数据集(IDD)中的道路场景 计算机视觉 NA 深度学习 改进的CANet(结合U-Net和LinkNet元素) 图像 印度驾驶数据集(IDD) NA NA NA NA
1255 2025-01-23
HybNet: A hybrid deep models for medicinal plant species identification
2025-Jun, MethodsX IF:1.6Q2
研究论文 本文介绍了三种创新的混合模型,用于在非约束环境下实时识别药用植物物种,通过结合卷积神经网络的优势来提高识别准确率 本文的创新点在于提出了三种混合模型,结合了VGG16、MobileNet、ResNet50和Squeeze and Excitation (SE)层的优势,显著提高了药用植物物种识别的准确率,特别是在特征增强和特征缩放方面 深度学习模型在小型数据集上训练和测试,尽管取得了较高的准确率,但数据集的规模可能限制了模型的泛化能力 研究目的是通过混合深度学习模型提高药用植物物种识别的准确率,特别是在复杂环境下的实时识别 研究对象为药用植物物种的图像数据 计算机视觉 NA 深度学习 CNN (VGG16, MobileNet, ResNet50), KNN, Squeeze and Excitation (SE)层 图像 自建的药用植物数据集,具体样本数量未提及 NA NA NA NA
1256 2025-01-16
Deep learning radiomics analysis for prediction of survival in patients with unresectable gastric cancer receiving immunotherapy
2025-Jun, European journal of radiology open IF:1.8Q3
研究论文 本研究旨在通过结合影像学和临床病理变量,利用深度学习放射组学分析预测接受免疫治疗的不可切除胃癌患者的生存期 采用多模态集成方法,结合CT影像数据和临床病理变量,构建深度学习模型预测患者生存期,并构建了列线图进行验证 样本量相对较小,且仅在中国人民解放军总医院的两个医疗中心进行,可能限制了结果的普适性 预测接受免疫治疗的不可切除胃癌患者的生存期 不可切除胃癌患者 数字病理 胃癌 深度学习 多模态集成模型 CT影像数据和临床病理数据 训练队列79名患者,外部验证队列97名患者 NA NA NA NA
1257 2025-10-07
Enhanced diabetic retinopathy detection using U-shaped network and capsule network-driven deep learning
2025-Jun, MethodsX IF:1.6Q2
研究论文 本研究提出结合UNet++和胶囊网络的混合深度学习模型,用于青光眼的精确检测 首次将UNet++语义分割与胶囊网络相结合,利用胶囊网络识别层次化模式的能力,比传统CNN对青光眼变化更敏感 NA 提高青光眼检测的准确性 眼底图像中的视杯和视盘 计算机视觉 青光眼 直方图均衡化,对比度受限自适应直方图均衡化(CLAHE) CNN,胶囊网络 图像 NA NA UNet++,CapsNet 准确率 NA
1258 2025-10-07
Comparative analysis and enhancing rainfall prediction models for monthly rainfall prediction in the Eastern Thailand
2025-Jun, MethodsX IF:1.6Q2
研究论文 本研究评估并开发了深度学习模型用于泰国东部地区月降雨量预测,重点分析了海洋尼诺指数的最佳滞后时间 开发了一种针对厄尔尼诺-南方振荡不同条件的新型混合深度学习模型,并在三种不同气候阶段验证了其性能 研究仅限于泰国东部五个站点,模型在其他地区的适用性需要进一步验证 提高泰国东部地区月降雨量预测的准确性 泰国东部五个站点的月降雨量数据 机器学习 NA 深度学习 RNN, LSTM, GRU 时间序列数据 泰国东部五个气象站的数据 NA RNN with ReLU, LSTM, GRU (单层), LSTM+LSTM, LSTM+GRU (多层) 平均绝对误差, 均方根误差 NA
1259 2025-10-07
Preliminary study on detection and diagnosis of focal liver lesions based on a deep learning model using multimodal PET/CT images
2025-Jun, European journal of radiology open IF:1.8Q3
研究论文 开发并验证基于多模态PET/CT影像的深度学习模型,用于检测和分类肝脏局灶性病变 首次结合多模态PET/CT影像和深度学习技术进行肝脏局灶性病变的检测与分类 样本量有限(150例患者),单中心研究 开发用于肝脏局灶性病变检测和分类的深度学习模型 肝脏局灶性病变患者(良恶性结节)和无病变患者 医学影像分析 肝脏疾病 18F-FDG PET/CT成像 深度学习模型 多模态医学影像(PET/CT) 150例患者(46例良性结节,51例恶性结节,53例无病变) NA NA Dice系数, 精确率, 召回率, F1分数, ROC, AUC NA
1260 2025-01-07
Deep learning enabled near-isotropic CAIPIRINHA VIBE in the nephrogenic phase improves image quality and renal lesion conspicuity
2025-Jun, European journal of radiology open IF:1.8Q3
研究论文 本研究探讨了深度学习加速的CAIPIRINHA-VIBE技术在肾脏成像中的应用,以提升图像质量和病变检测能力 首次将深度学习技术应用于CAIPIRINHA-VIBE序列,以改善肾脏成像的图像质量和病变显着性 DL-CAIPIRINHA-VIBE呈现出更多的合成外观和混叠伪影 比较DL-CAIPIRINHA-VIBE与标准CAIPIRINHA-VIBE在肾脏成像中的图像质量和病变检测能力 50名患者,包括23个实性和45个囊性肾脏病变 医学影像 肾脏疾病 深度学习加速的CAIPIRINHA-VIBE技术 深度学习模型 MRI图像 50名患者,68个肾脏病变 NA NA NA NA
回到顶部