本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1301 | 2025-05-18 |
LMCBert: An Automatic Academic Paper Rating Model Based on Large Language Models and Contrastive Learning
2025-Jun, IEEE transactions on cybernetics
IF:9.4Q1
DOI:10.1109/TCYB.2025.3550203
PMID:40168236
|
研究论文 | 本文提出了一种基于大型语言模型和对比学习的自动学术论文评分模型LMCBert,旨在提高论文接受预测的准确性 | 结合大型语言模型提取论文核心语义内容,并利用动量对比学习优化Bert训练,增强语义表示的区分度 | 未提及模型在跨学科或不同学术领域的泛化能力 | 开发高效的自动学术论文评分方法,减少人工评审的资源和偏见 | 学术论文 | 自然语言处理 | NA | 大型语言模型(LLMs)、动量对比学习(MoCo) | LMCBert(基于Bert的改进模型) | 文本 | 未明确提及具体样本量,但使用了公开数据集 |
1302 | 2025-05-18 |
GRU4ACE: Enhancing ACE inhibitory peptide prediction by integrating gated recurrent unit with multi-source feature embeddings
2025-Jun, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70026
PMID:40371738
|
研究论文 | 本研究提出了一种名为GRU4ACE的创新深度学习框架,通过整合门控循环单元(GRU)和多源特征嵌入,提高了血管紧张素转换酶(ACE)抑制肽的预测准确性 | GRU4ACE框架首次整合了多源特征编码方法(包括序列信息、图形信息、语义信息和上下文信息)和GRU模型,显著提升了ACE抑制肽的预测性能 | NA | 提高ACE抑制肽的预测准确性,为新型降压药物的开发提供指导 | ACE抑制肽 | 自然语言处理 | 心血管疾病 | 自然语言处理(NLP)嵌入、预训练蛋白质语言模型(PLM)嵌入 | GRU | 蛋白质序列数据 | NA |
1303 | 2025-05-18 |
Deep-Diffeomorphic Networks for Conditional Brain Templates
2025-Jun-01, Human brain mapping
IF:3.5Q1
DOI:10.1002/hbm.70229
PMID:40372124
|
research paper | 本文提出了一种基于深度学习的条件性脑模板生成方法,利用微分同胚框架来创建几何方法,以捕捉年龄依赖的解剖学差异 | 使用微分同胚(拓扑保持)框架创建纯几何方法,能够生成具有高空间保真度和一致拓扑结构的条件性脑模板 | 尽管方法在捕捉年龄依赖的解剖学差异方面有一定效果,但仍需进一步改进以更准确地跟踪所有脑结构的变化 | 开发一种能够生成条件性脑模板的深度学习方法,以改进神经影像分析中的配准精度和脑发育与退化过程的捕捉 | 认知正常的参与者(来自阿尔茨海默病神经影像倡议ADNI的数据集) | 神经影像分析 | 阿尔茨海默病 | 深度学习 | deep-diffeomorphic networks | 脑部扫描图像 | 来自ADNI的认知正常参与者数据集 |
1304 | 2025-05-17 |
A novel method for online sex sorting of silkworm pupae (Bombyx mori) using computer vision combined with deep learning
2025-Jun, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.14177
PMID:39936219
|
研究论文 | 提出了一种基于计算机视觉和深度学习的蚕蛹性别在线分选新方法 | 开发了结合级联空间通道注意力(CSCA)和G-GhostNet的新型实时性别识别模型,并提出了新的损失函数以减少模型复杂度和避免过拟合 | NA | 提高蚕蛹性别分选的效率和生产力 | 蚕蛹(家蚕) | 计算机视觉 | NA | 深度学习 | CSCA, G-GhostNet | 图像 | NA |
1305 | 2025-05-17 |
Predicting 5-Year EDSS in Multiple Sclerosis with LSTM Networks: A Deep Learning Approach to Disease Progression
2025-Jun, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
IF:1.9Q4
DOI:10.1016/j.jocn.2025.111218
PMID:40174549
|
research paper | 该研究利用LSTM网络预测多发性硬化症患者5年后的EDSS评分,以评估疾病进展 | 与现有研究不同,该方法整合了多发性硬化症患者的静态和动态数据,实现了EDSS评分从0到10的准确预测,且预测误差最小 | 研究仅基于两个中心的1000名患者数据,可能限制了模型的泛化能力 | 预测多发性硬化症患者5年后的残疾状态评分(EDSS) | 多发性硬化症患者 | machine learning | 多发性硬化症 | LSTM | LSTM | 临床和人口统计学数据 | 1000名多发性硬化症患者 |
1306 | 2025-05-17 |
Developing the Artificial Intelligence Method and System for "Multiple Diseases Holistic Differentiation" in Traditional Chinese Medicine and Its Interpretability to Clinical Decision
2025-Jun, Journal of evidence-based medicine
DOI:10.1111/jebm.70016
PMID:40176367
|
研究论文 | 本研究开发了一种结合先验规则和深度学习的中医人工智能方法及系统,用于提升中医多病整体辨证的临床决策透明度和可解释性 | 提出了TCM-SEI-RD方法和TCM-MDHD系统,融合BERT与CNN模型捕捉特征相关序列,并通过分层模块预测多种中医证候 | 未明确提及具体样本量及外部验证结果 | 开发可解释性强的中医AI临床决策支持系统 | 中医多病整体辨证(MDHD)的证候要素 | 自然语言处理 | 中医多病种 | 深度学习 | BERT-CNN混合模型 | 文本(专家知识数据集) | NA |
1307 | 2025-05-17 |
A comprehensive image dataset for accurate diagnosis of betel leaf diseases using artificial intelligence in plant pathology
2025-Jun, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111564
PMID:40371167
|
research paper | 该研究旨在开发一个全面的槟榔叶病害图像数据集,以支持基于人工智能的植物病理学研究 | 首次提供了一个全面的槟榔叶病害图像数据集,填补了该领域的数据空白 | 数据集仅包含两种常见病害(叶腐病和叶斑病),可能无法覆盖所有槟榔叶病害类型 | 开发可靠的槟榔叶病害诊断工具,支持农业可持续发展 | 槟榔叶及其病害(叶腐病和叶斑病) | digital pathology | plant disease | image augmentation (flipping, brightness factor, contrast factor, rotation) | deep learning | image | 初始采集2,037张图像,通过数据增强扩展到10,185张图像 |
1308 | 2025-05-16 |
Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis
2025-Jun, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11212-6
PMID:39613960
|
research paper | 本研究评估了深度学习重建(DLR)在CT检查中降低辐射剂量和癌症风险的实际效果 | 首次利用真实世界临床数据分析DLR对辐射诱发癌症风险的影响 | 研究为单中心回顾性分析,可能存在选择偏倚 | 评估DLR技术对CT检查辐射剂量和癌症风险的降低效果 | 接受全身CT检查的成年患者 | medical imaging | radiation-induced cancer | deep learning reconstruction (DLR) | NA | CT scan data | 5247 matched cases (pre-DLR) + 5247 matched cases (post-DLR) |
1309 | 2024-12-12 |
Evaluating deep learning and radiologist performance in volumetric prostate cancer analysis with biparametric MRI and histopathologically mapped slides
2025-Jun, Abdominal radiology (New York)
DOI:10.1007/s00261-024-04734-6
PMID:39658736
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
1310 | 2025-05-16 |
Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading
2025-Jun, European radiology
IF:4.7Q1
DOI:10.1007/s00330-024-11287-1
PMID:39699671
|
研究论文 | 本研究评估了一种基于双参数MRI的深度学习系统在检测临床显著性前列腺癌方面的性能,并与放射学解读进行了比较 | 开发了一个3D nnU-Net模型用于前列腺癌检测,在独立测试队列中表现优于放射科医生,特别是在中等和大尺寸病灶检测上 | 对小病灶的检测仍然具有挑战性 | 评估深度学习系统在前列腺癌检测中的性能 | 临床显著性前列腺癌(csPCa),定义为Gleason Grade Group (GGG) ≥ 2 | 数字病理 | 前列腺癌 | 双参数MRI(bpMRI) | 3D nnU-Net | 医学影像 | 训练集4381例bpMRI病例(3800阳性,581阴性),测试集328例来自PROSTATEx数据集 |
1311 | 2025-05-15 |
Convolutional neural network-based method for the real-time detection of reflex syncope during head-up tilt test
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108622
PMID:40068530
|
研究论文 | 提出一种基于卷积神经网络的实时反射性晕厥检测方法,用于头高位倾斜试验中 | 采用端到端架构结合残差和挤压-激励块,无需手动提取特征,直接从原始血压信号中量化反射性晕厥发生概率 | 仅使用血压信号进行检测,可能忽略了其他生理信号提供的有用信息 | 开发一种实时反射性晕厥风险监测系统,提高医疗效率和患者便利性 | 反射性晕厥患者 | 数字病理学 | 心血管疾病 | 深度学习 | CNN | 生理信号数据 | 1348名患者(1291名正常,57名反射性晕厥患者) |
1312 | 2025-05-15 |
MCNEL: A multi-scale convolutional network and ensemble learning for Alzheimer's disease diagnosis
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108703
PMID:40081198
|
research paper | 提出了一种多尺度卷积网络和集成学习框架(MCNEL),用于阿尔茨海默病的早期和准确诊断 | 采用增强版的EfficientNet-B0和MobileNetV2模型,并与DenseNet121模型集成,开发了基于SimAM的特征融合方法,以及使用自适应权重调整策略的集成学习分类器 | 未提及具体的数据集局限性或模型泛化能力的详细分析 | 提高阿尔茨海默病的早期诊断准确率 | 阿尔茨海默病患者及认知障碍不同阶段的患者 | digital pathology | geriatric disease | MRI | CNN, Ensemble Learning (EfficientNet-B0, MobileNetV2, DenseNet121) | image | ADNI数据集(ADNI-1和ADNI-2) |
1313 | 2025-05-15 |
Light scattering imaging modal expansion cytometry for label-free single-cell analysis with deep learning
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108726
PMID:40112688
|
研究论文 | 本研究开发了一种基于深度学习的模态扩展细胞术,用于无标记单细胞分析 | 提出了一种新的网络优化方法,结合对抗损失、L1距离损失和VGG感知损失,将单模光散射图像扩展为多模态图像 | 实验验证仅限于模拟图像、标准球体和特定细胞类型(如宫颈癌细胞和白血病细胞) | 开发一种无标记单细胞分析方法,用于药物开发、疾病诊断和个性化医疗 | 宫颈癌细胞和白血病细胞 | 数字病理学 | 宫颈癌、白血病 | 光散射成像 | 深度学习 | 图像 | 模拟图像、标准球体和多种细胞类型(如宫颈癌细胞和白血病细胞) |
1314 | 2025-05-15 |
The impact of training image quality with a novel protocol on artificial intelligence-based LGE-MRI image segmentation for potential atrial fibrillation management
2025-Jun, Computer methods and programs in biomedicine
IF:4.9Q1
DOI:10.1016/j.cmpb.2025.108722
PMID:40112687
|
研究论文 | 本研究开发了一种基于深度学习的自动化分割流程,通过标准化标记协议提高LGE-MRI图像分割的准确性和效率,以支持心房颤动患者的消融治疗 | 采用标准化标记协议和预训练的RIFE模型,显著提高了神经网络在心房LGE-MRI图像分割中的性能 | 研究结果依赖于手动标记的数据,可能存在主观误差,且样本量未明确说明 | 开发高效的自动化深度学习分割流程,以改善心房颤动患者的消融治疗效果 | 心房颤动患者的LGE-MRI图像 | 数字病理学 | 心血管疾病 | LGE-MRI | nnU-Net, smpU-Net++, RIFE | 图像 | NA |
1315 | 2025-05-14 |
Rapid detection of the viability of naturally aged maize seeds using multimodal data fusion and explainable deep learning techniques
2025-Jun-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.143692
PMID:40068265
|
研究论文 | 本研究提出了一种基于多模态数据融合和可解释深度学习技术的自然老化玉米种子活力快速检测方法 | 提出了MSCNSVN模型,通过融合多传感器信息(MV、RS、TS、FS、SS)提高种子活力检测的准确性,并分析了不同数据对模型精度的影响 | 未提及具体样本量,且模型在单模态数据上的准确率仍有提升空间 | 提高自然老化玉米种子活力的检测准确率 | 自然老化的玉米种子 | 机器学习 | NA | 多模态数据融合、深度学习 | MSCNSVN | 多传感器数据(MV、RS、TS、FS、SS) | NA |
1316 | 2025-05-14 |
Online assessment of soluble solids content in strawberries using a developed Vis/NIR spectroscopy system with a hanging grasper
2025-Jun-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.143671
PMID:40073605
|
研究论文 | 本研究探讨了使用可见/近红外光谱(VIS/NIRS)在线检测草莓在悬挂运输过程中可溶性固形物含量(SSC)的可行性 | 开发了一种悬挂式抓取器的VIS/NIRS系统,并结合深度学习方法来提高在线检测草莓SSC的准确性和效率 | 研究仅针对草莓,未涉及其他小且易损水果的在线检测 | 实现在线检测草莓内部品质,特别是可溶性固形物含量(SSC) | 草莓 | 光谱分析 | NA | 可见/近红外光谱(VIS/NIRS) | PLSR, 1D-CNN, 1D-CNN-LSTM | 光谱数据 | 未明确说明样本数量 |
1317 | 2025-05-14 |
Artificial intelligence driven plaque characterization and functional assessment from CCTA using OCT-based automation: A prospective study
2025-Jun-01, International journal of cardiology
IF:3.2Q2
DOI:10.1016/j.ijcard.2025.133140
PMID:40064207
|
研究论文 | 开发并验证了一种基于AI的模型,利用CCTA和OCT图像自动分析斑块特征和冠状动脉功能 | 首次将AI模型与OCT图像结合,用于自动化分析斑块特征和冠状动脉功能,并展示了与OCT分析结果的高度一致性 | 样本量相对较小(100名患者),且仅针对特定类型的斑块和冠状动脉狭窄进行了验证 | 开发并验证一种AI模型,用于自动化分析冠状动脉斑块特征和功能 | 100名接受侵入性冠状动脉造影、OCT和CCTA检查的患者 | 数字病理学 | 心血管疾病 | 光学相干断层扫描(OCT)、冠状动脉CT血管造影(CCTA) | 深度学习卷积神经网络(CNN) | 图像 | 100名患者,包括21,471张断层扫描图像 |
1318 | 2025-05-14 |
Genetic Distinctions Between Reticular Pseudodrusen and Drusen: A Genome-Wide Association Study
2025-Jun, American journal of ophthalmology
IF:4.1Q1
DOI:10.1016/j.ajo.2025.03.007
PMID:40064387
|
研究论文 | 通过全基因组关联研究(GWAS)比较网状假性玻璃膜疣(RPD)和玻璃膜疣(drusen)的遗传差异 | 首次识别出与RPD特异性相关的三个新遗传位点,并确认了ARMS2-HTRA1位点与RPD负荷的显著关联 | 样本量有限,特别是纯RPD病例较少(仅66例),且部分新发现的遗传变异属于罕见变异(次要等位基因频率<5%) | 鉴定网状假性玻璃膜疣(RPD)相对于玻璃膜疣(drusen)的特异性遗传决定因素 | UK Biobank(UKBB)队列中的RPD患者、drusen患者和对照参与者 | 基因组学 | 年龄相关性黄斑变性(AMD) | 全基因组关联研究(GWAS)、深度学习框架、光学相干断层扫描(OCT) | 深度学习 | 基因组数据、OCT影像、彩色眼底照片 | 1787名参与者(1037名对照、361名纯drusen、66名纯RPD、323名混合病例) |
1319 | 2025-05-14 |
Spectroscopic techniques combined with chemometrics for rapid detection of food adulteration: Applications, perspectives, and challenges
2025-Jun, Food research international (Ottawa, Ont.)
DOI:10.1016/j.foodres.2025.116459
PMID:40356185
|
review | 本文综述了近三年来六种光谱技术与化学计量学方法在常见食品掺假检测中的应用、前景与挑战 | 总结了六种光谱技术(NIR、FTIR、HSI、Raman、UV-Vis和FS)与化学计量学方法在食品掺假检测中的综合应用,并提出了基于深度学习的方法和数据融合的未来研究方向 | 线性化学计量学方法仍是主要研究方法,这可能限制光谱技术的应用潜力 | 探讨光谱技术与化学计量学在食品掺假快速检测中的应用与未来发展 | 常见食品掺假(粉状食品、肉类、蜂蜜、饮料、食用油和乳制品) | 食品检测 | NA | NIR, FTIR, HSI, Raman, UV-Vis, FS | 线性化学计量学方法、深度学习模型 | 光谱数据 | NA |
1320 | 2025-05-13 |
A general deep learning model for predicting and classifying pea protein content via visible and near-infrared spectroscopy
2025-Jun-30, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.143617
PMID:40049135
|
研究论文 | 本研究提出了一种名为PeaNet的深度学习模型,用于通过可见光和近红外光谱预测和分类豌豆蛋白质含量 | PeaNet模型采用改进的卷积神经网络架构,显著优于传统机器学习模型和传统深度学习架构 | 研究仅基于52个品种的156个光谱数据集,样本多样性可能有限 | 快速准确地检测豌豆蛋白质含量,以促进育种和食品质量控制 | 豌豆蛋白质含量 | 机器学习 | NA | 可见光和近红外光谱 | 改进的CNN | 光谱数据 | 156个来自52个不同品种的光谱数据集 |