本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 821 | 2025-10-06 |
Revolutionizing agriculture: A comprehensive review on artificial intelligence applications in enhancing properties of agricultural produce
2025-Jul, Food chemistry: X
DOI:10.1016/j.fochx.2025.102748
PMID:40686912
|
综述 | 本文全面回顾了人工智能在提升农产品特性和优化农业实践中的应用 | 系统整合了包括机器学习、深度学习、物联网和决策支持系统在内的多种AI工具在农业领域的综合应用 | 广泛采用面临高成本、隐私问题、基础设施不足和技术知识有限等障碍 | 探索人工智能技术在解决农业挑战中的潜力和局限性 | 农产品特性、农业实践 | 机器学习 | NA | 图像分类、预测建模 | CNN, LSTM | 图像、时间序列数据 | NA | NA | 卷积神经网络, 长短期记忆网络 | NA | NA |
| 822 | 2025-10-06 |
A proof-of-concept study of direct magnetic resonance imaging-based proton dose calculation for brain tumors via neural networks with Monte Carlo-comparable accuracy
2025-Jul, Physics and imaging in radiation oncology
DOI:10.1016/j.phro.2025.100806
PMID:40687308
|
研究论文 | 本研究开发了一种基于深度学习的质子剂量计算引擎,可直接从磁共振图像计算脑肿瘤患者的质子剂量 | 首次实现直接从磁共振图像进行质子剂量计算,绕过了合成CT的中间步骤,同时保持蒙特卡罗级别的精度 | 研究样本量较小(39例脑肿瘤患者),且仅针对脑部肿瘤进行了验证 | 开发直接从磁共振图像进行质子剂量计算的方法,简化质子治疗工作流程 | 脑肿瘤患者 | 医学影像分析 | 脑肿瘤 | 磁共振成像,质子治疗,蒙特卡罗模拟 | xLSTM | 医学影像(MR和CT图像) | 39例脑肿瘤患者(29例训练,3例验证,7例测试) | NA | xLSTM | 伽马通过率,百分比剂量误差 | NA |
| 823 | 2025-10-06 |
Three-dimensional reconstruction of the knee joint based on automated 1.5T magnetic resonance image segmentation: A feasibility study
2025-Jul, Journal of experimental orthopaedics
IF:2.0Q2
DOI:10.1002/jeo2.70361
PMID:40689092
|
研究论文 | 本研究验证了基于1.5T磁共振图像通过自动和半自动分割方法进行膝关节三维重建的准确性 | 首次将基于Transformer的深度学习模型(UNet-R)应用于膝关节MRI自动分割,并系统比较了全自动、半自动和手动分割方法的性能 | 样本量较小(11个膝关节标本),全自动分割方法存在较大变异性需要人工校正 | 验证1.5T磁共振图像自动分割方法在膝关节三维重建中的准确性和可行性 | 11个新鲜冷冻尸体膝关节标本的股骨远端和胫骨近端 | 医学影像分析 | 膝关节疾病 | 磁共振成像, 激光表面扫描 | 深度学习 | 磁共振图像, 三维点云数据 | 11个尸体膝关节标本 | NA | UNet-R(基于Transformer的U-Net变体) | 点对表面距离, Bland-Altman分析 | NA |
| 824 | 2025-10-06 |
A multi-task deep neural network reveals inflowing river impacts for predictive lake management
2025-Jul, Environmental science and ecotechnology
IF:14.0Q1
DOI:10.1016/j.ese.2025.100592
PMID:40689412
|
研究论文 | 开发了一种多任务深度神经网络模型,用于预测流入河流对湖泊水质的影响 | 首次将多任务深度神经网络应用于复杂湖泊系统中多个水质指标的同步预测,相比传统方法精度提升高达56.3% | 模型在特定湖泊(滇池)上开发,在其他湖泊的适用性需要进一步验证 | 开发数据驱动的湖泊管理工具,预测河流输入对湖泊水质的影响 | 滇湖生态系统及其流入河流 | 机器学习 | NA | 水质监测数据 | 深度神经网络 | 水质指标数据 | NA | NA | 多任务深度神经网络 | 预测精度 | NA |
| 825 | 2025-10-06 |
Analysis of Tumor Microenvironmental Features Between Primary and Synchronous Liver Metastases From Patients With Colorectal Cancers Using a Deep Learning Algorithm
2025-Jul, JCO clinical cancer informatics
IF:3.3Q2
DOI:10.1200/CCI-25-00004
PMID:40694782
|
研究论文 | 使用深度学习算法分析结直肠癌患者原发灶与同步肝转移灶肿瘤微环境特征的差异 | 首次使用经过验证的深度学习分割算法(QuantCRC)系统量化比较结直肠癌原发灶与同步肝转移灶的15种不同形态学特征 | 样本量相对较小(N=57),仅包含同步肝转移患者,未考虑异时性转移 | 比较结直肠癌原发灶与同步肝转移灶肿瘤微环境形态学特征的差异 | 结直肠癌患者原发肿瘤和同步肝转移灶 | 数字病理学 | 结直肠癌 | H&E染色组织切片数字化 | 深度学习分割算法 | 病理图像 | 57例结直肠癌伴同步肝转移患者 | NA | QuantCRC | Wilcoxon符号秩检验,线性回归分析 | NA |
| 826 | 2025-10-06 |
VascX Models: Deep Ensembles for Retinal Vascular Analysis From Color Fundus Images
2025-Jul-01, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.14.7.19
PMID:40699175
|
研究论文 | 提出并验证了用于彩色眼底图像的血管、动静脉、视盘分割和中心凹定位的深度学习模型集成VascX | 使用超过15个公开注释数据集构建多样化开发集,采用新的更鲁棒的预处理算法和强数据增强训练UNet模型集成 | 未明确说明具体的数据集规模和模型计算资源需求 | 开发用于视网膜血管分析的深度学习模型,支持更稳健的视网膜血管分析 | 彩色眼底图像中的血管、动静脉、视盘和中心凹 | 计算机视觉 | 眼科疾病 | 深度学习 | UNet | 图像 | 结合超过15个公开注释数据集,包含荷兰研究(主要是鹿特丹研究)的彩色眼底图像 | NA | UNet | Dice系数, 平均绝对误差, Pearson相关系数 | NA |
| 827 | 2025-07-23 |
Enhanced Online Continuous Brain-Control by Deep Learning-based EEG Decoding
2025-Jul-21, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3591254
PMID:40690341
|
研究论文 | 本研究通过深度学习模型IFNet提升基于运动想象的在线脑机接口性能 | 首次在在线运动想象脑机接口中应用深度学习模型IFNet,并显著提升性能 | 研究样本量较小(15名受试者),且未在临床患者中进行验证 | 探索深度学习在在线运动想象脑机接口中的应用效果 | 15名无脑机接口经验的受试者 | 脑机接口 | 中风康复 | EEG信号解码 | IFNet(交互频率卷积神经网络) | EEG信号 | 15名无BCI经验的受试者 | NA | NA | NA | NA |
| 828 | 2025-07-23 |
Marigold: Affordable Adaptation of Diffusion-Based Image Generators for Image Analysis
2025-Jul-21, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3591076
PMID:40690349
|
research paper | 介绍Marigold,一种基于预训练潜在扩散模型的条件生成模型家族和微调协议,用于密集图像分析任务 | 提出了一种新的方法,通过最小化预训练潜在扩散模型的架构修改,利用小规模合成数据集在单GPU上训练,实现最先进的零样本泛化 | 需要依赖预训练的潜在扩散模型,且训练过程虽然高效但仍需数天时间 | 探索如何从预训练的文本到图像生成模型中提取知识,并适应于密集图像分析任务 | 预训练的潜在扩散模型(如Stable Diffusion)及其在密集图像分析任务中的应用 | computer vision | NA | denoising diffusion in a latent space | conditional generative models, latent diffusion models | image | small synthetic datasets | NA | NA | NA | NA |
| 829 | 2025-07-23 |
Harmonization and strengthening of Japan's biodosimetry network to support medical triage in the event of a nuclear disaster
2025-Jul-21, International journal of radiation biology
IF:2.1Q2
DOI:10.1080/09553002.2025.2531908
PMID:40690716
|
研究论文 | 本文探讨了AI辅助的生物剂量测定系统在日本核灾难医疗分诊中的应用及其网络强化 | 利用深度学习算法自动化PNA-FISH图像中的染色体畸变检测,提高了剂量评估的效率和准确性 | 系统整合面临挑战,包括血液运输中的温度管理、染色体图像制备的标准化、数据共享系统的安全性及用户友好界面的开发 | 开发和整合AI辅助的生物剂量测定系统,以支持大规模核灾难中的医疗分诊和剂量评估 | 日本的先进辐射紧急医疗支持中心及其生物剂量测定网络 | 数字病理学 | 核辐射伤害 | PNA-FISH, 深度学习 | 深度学习模型 | 图像 | NA | NA | NA | NA | NA |
| 830 | 2025-07-23 |
Deep Learning-Driven Multimodal Fusion Model for Prediction of Middle Cerebral Artery Aneurysm Rupture Risk
2025-Jul-21, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.07.001
PMID:40691114
|
研究论文 | 本研究开发了一种多模态融合深度学习模型MCANet,用于预测大脑中动脉动脉瘤破裂风险 | 首次整合原始CTA图像、放射组学特征、临床参数和形态学特征等多模态数据构建动脉瘤破裂风险评估框架 | 样本量仍有限,外部验证集样本量较小(51例) | 开发大脑中动脉动脉瘤破裂风险分层预测模型 | 大脑中动脉动脉瘤患者 | 数字病理 | 心血管疾病 | CT血管造影(CTA)、放射组学分析 | 多模态融合深度学习模型(MCANet) | 医学影像(CTA)、临床数据、形态学参数 | 内部队列578例(其中破裂369例)+两个外部验证集51例 | NA | NA | NA | NA |
| 831 | 2025-07-23 |
Deep learning unlocks antimicrobial self-assembling peptides
2025-Jul-21, Nature materials
IF:37.2Q1
DOI:10.1038/s41563-025-02299-3
PMID:40691518
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 832 | 2025-07-23 |
The safety and accuracy of radiation-free spinal navigation using a short, scoliosis-specific BoneMRI-protocol, compared to CT
2025-Jul-21, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09151-x
PMID:40691585
|
研究论文 | 本研究评估了一种针对脊柱侧弯的MRI协议,通过深度学习算法生成合成CT(sCT)扫描,用于无辐射的脊柱导航,并与传统CT在安全性和准确性上进行比较 | 使用AI生成的合成CT(sCT)进行脊柱导航,避免了年轻患者受到有害辐射 | 研究仅在尸体模型中进行,尚未在临床患者中验证 | 比较MRI-based合成CT脊柱导航与传统CT在胸椎和腰椎椎弓根螺钉规划和放置中的安全性和准确性 | 5具尸体的脊柱 | 数字病理 | 脊柱侧弯 | MRI, 深度学习算法 | 深度学习 | 图像 | 5具尸体脊柱,共插入140根k-wires(其中3根被排除) | NA | NA | NA | NA |
| 833 | 2025-07-23 |
MAFL-Attack: a targeted attack method against deep learning-based medical image segmentation models
2025-Jul, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.4.044501
PMID:40686919
|
研究论文 | 提出了一种针对深度学习医学图像分割模型的针对性攻击方法MAFL-Attack | 利用高级抽象语义信息干扰模型对对抗样本的理解,并通过低频分量约束确保对抗样本的不可察觉性 | 目前缺乏针对基于深度学习的医学图像分割模型的对抗攻击方法研究 | 研究对抗攻击方法以提高医学图像分割模型的鲁棒性设计 | 深度学习医学图像分割模型 | 数字病理 | NA | 对抗攻击 | 深度学习模型 | 医学图像 | NA | NA | NA | NA | NA |
| 834 | 2025-07-22 |
A Deep Learning Approach to Assessing Cell Identity in Stem Cell-Based Embryo Models
2025-Jul-22, Methods in molecular biology (Clifton, N.J.)
DOI:10.1007/7651_2025_654
PMID:40690128
|
research paper | 该研究利用深度学习技术评估干细胞胚胎模型中细胞身份 | 开发了一个整合早期人类发育的深度学习模型,能够对体外细胞类型进行身份鉴定并提供分类可靠性评分 | 未提及具体样本量或模型验证的详细限制 | 评估干细胞胚胎模型中细胞身份与真实胚胎细胞的相似性 | 胚胎干细胞(ESCs)和体外培养的细胞类型 | machine learning | NA | scRNA-seq, scvi-tools | DL | RNA-seq数据 | NA | NA | NA | NA | NA |
| 835 | 2025-07-22 |
CoxKAN: Kolmogorov-Arnold networks for interpretable, High-Performance survival analysis
2025-Jul-21, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf413
PMID:40685627
|
研究论文 | 介绍了一种名为CoxKAN的可解释高性能生存分析模型,结合了Cox比例风险模型和Kolmogorov-Arnold网络的优势 | 提出了一种结合可解释性和高性能的生存分析方法,能够揭示预测变量之间的复杂相互作用并提供符号公式 | 未提及具体局限性 | 开发一种既保持高性能又具有可解释性的生存分析模型 | 生存分析模型在医学中的应用 | 机器学习 | NA | Kolmogorov-Arnold Networks (KANs) | CoxKAN | 临床数据和基因组生物标志物数据 | 四个合成数据集和九个真实数据集(包括五个临床数据队列和四个基因组生物标志物队列) | NA | NA | NA | NA |
| 836 | 2025-07-22 |
Noninvasive Deep Learning System for Preoperative Diagnosis of Follicular-Like Thyroid Neoplasms Using Ultrasound Images: A Multicenter, Retrospective Study
2025-Jul-21, Annals of surgery
IF:7.5Q1
DOI:10.1097/SLA.0000000000006841
PMID:40689491
|
research paper | 提出一种基于深度学习的非侵入性系统,用于利用常规超声图像对滤泡状甲状腺肿瘤进行术前诊断 | 开发了一种深度学习系统,能够比ACR TI-RADS更准确地诊断滤泡状甲状腺肿瘤,并减少不必要的侵入性干预 | 研究为回顾性研究,可能受到数据收集时的偏差影响 | 提高滤泡状甲状腺肿瘤的术前诊断准确性 | 滤泡状甲状腺肿瘤患者 | digital pathology | thyroid cancer | ultrasound imaging | Inception-v3, ResNet50, Inception-ResNet-v2, DenseNet161 | image | 3634名患者,来自11个中心,包括1748例甲状腺滤泡腺瘤、299例滤泡癌和1587例乳头状甲状腺癌滤泡变异型 | NA | NA | NA | NA |
| 837 | 2025-07-22 |
SOLeNNoID: A Deep Learning Pipeline For Solenoid Residue Detection in Protein Structures
2025-Jul-21, Bioinformatics (Oxford, England)
DOI:10.1093/bioinformatics/btaf415
PMID:40689530
|
研究论文 | 介绍了一种基于深度学习的管道SOLeNNoID,用于预测蛋白质结构中的螺线管残基 | 利用CNN架构分析蛋白质距离矩阵,准确识别螺线管区域,覆盖所有三种螺线管亚类,并在性能上优于现有方法 | 未明确提及具体限制 | 开发一种结构基础的螺线管残基检测方法,以解决序列基础方法的局限性 | 蛋白质结构中的螺线管残基 | 生物信息学 | NA | 深度学习 | CNN | 蛋白质距离矩阵 | 整个Protein Data Bank (PDB)数据库 | NA | NA | NA | NA |
| 838 | 2025-07-22 |
Dual-Dielectric-Layer-Based Iontronic Pressure Sensor Coupling Ultrahigh Sensitivity and Wide-Range Detection for Temperature/Pressure Dual-Mode Sensing
2025-Jul-20, Advanced materials (Deerfield Beach, Fla.)
DOI:10.1002/adma.202503926
PMID:40685692
|
研究论文 | 本文提出了一种新型的双介电层离子电子压力传感器(DLIPS),结合高和低介电常数层,实现了超高灵敏度和宽范围检测的温度/压力双模式传感 | 提出了一种新型的双介电层离子电子压力传感器结构,结合高和低介电常数层,实现了超高灵敏度(72548.7 kPa)、宽工作压力范围(0.001-420 kPa)、极低检测限(0.832 Pa)和超过5000次循环的卓越耐久性 | NA | 开发一种具有超高灵敏度和宽范围检测能力的温度/压力双模式传感器 | 双介电层离子电子压力传感器(DLIPS) | 传感器技术 | NA | 离子凝胶和开孔聚氨酯泡沫作为介电层 | 深度学习回归模型 | 压力和温度信号 | NA | NA | NA | NA | NA |
| 839 | 2025-07-22 |
Machine learning-assisted tacrolimus dose optimization in childhood- onset systemic lupus erythematosus through population pharmacokinetic modeling
2025-Jul-19, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110782
PMID:40684660
|
research paper | 本研究通过机器学习算法结合群体药代动力学模型,优化儿童系统性红斑狼疮患者的他克莫司剂量 | 首次将机器学习算法与药代动力学参数结合,用于预测儿童系统性红斑狼疮患者的个体化他克莫司剂量 | 样本量较小(86名患者),且仅基于回顾性数据 | 优化儿童系统性红斑狼疮患者的他克莫司治疗剂量 | 儿童系统性红斑狼疮患者 | machine learning | systemic lupus erythematosus | population pharmacokinetic modeling | XGBoost | clinical variables and pharmacokinetic parameters | 86名儿童系统性红斑狼疮患者的480个他克莫司谷浓度数据 | NA | NA | NA | NA |
| 840 | 2025-07-22 |
Robust Brain Tumor Detection and Classification From Multichannel MRI Using Deep Learning
2025-Jul, Developmental neurobiology
IF:2.7Q3
DOI:10.1002/dneu.22991
PMID:40686315
|
研究论文 | 本研究利用深度学习和计算机视觉技术,开发了一种从多通道MRI中检测和分类脑肿瘤的稳健方法 | 结合了DBST算法进行精确的肿瘤边缘检测和SIFT方法提供稳健且不变的特征分类,同时采用DarkNet53和DenseNet201深度学习模型提升分类性能 | 未来工作需探索更先进的深度学习架构、整合更多模态数据并进一步优化技术以提高准确性和鲁棒性 | 开发一种稳健的脑肿瘤检测和分类方法,以指导有效治疗策略并改善患者预后 | 多通道MRI图像中的脑肿瘤 | 计算机视觉 | 脑肿瘤 | DBST算法、SIFT方法、深度学习 | DarkNet53、DenseNet201 | 多通道MRI图像 | 公开可用的多通道MRI图像数据集 | NA | NA | NA | NA |