深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202507-202507] [清除筛选条件]
当前共找到 1814 篇文献,本页显示第 1601 - 1620 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1601 2025-07-01
Dual-type deep learning-based image reconstruction for advanced denoising and super-resolution processing in head and neck T2-weighted imaging
2025-Jul, Japanese journal of radiology IF:2.9Q2
研究论文 评估基于双类型深度学习的图像重建在头颈部脂肪抑制T2加权成像中的去噪和超分辨率处理效果 采用双类型深度学习进行图像重建,实现了有效的去噪和超分辨率处理,同时缩短了扫描时间 研究样本量较小(43例患者),且未详细说明深度学习模型的具体架构和训练细节 比较传统方法和基于深度学习的图像重建在头颈部脂肪抑制T2加权成像中的效果 头颈部脂肪抑制T2加权成像的图像质量 计算机视觉 头颈部病变 深度学习图像重建 DL(深度学习) 医学图像 43例患者
1602 2025-07-01
Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement
2025-Jul, Japanese journal of radiology IF:2.9Q2
research paper 本研究探讨了超分辨率深度学习图像重建(SR-DLR)在心肌CT晚期增强(CT-LE)图像质量提升中的应用 首次将超分辨率深度学习图像重建技术应用于心肌CT晚期增强图像,显著降低了图像噪声并提高了图像质量 研究样本量较小(仅30例患者),且为回顾性研究 评估SR-DLR技术在心肌CT晚期增强图像质量改善方面的效果 心肌CT晚期增强图像 digital pathology cardiovascular disease 超分辨率深度学习图像重建(SR-DLR) 深度学习模型(未明确具体类型) 医学影像(CT图像) 30例接受心肌CT晚期增强检查的患者
1603 2025-07-01
Machine learning in neuroimaging and computational pathophysiology of Parkinson's disease: A comprehensive review and meta-analysis
2025-Jul, Asian journal of psychiatry IF:3.8Q1
综述与荟萃分析 本文全面回顾并荟萃分析了机器学习和深度学习在帕金森病神经影像学和计算病理生理学中的应用 提出了Meta-Park模型用于帕金森病诊断,训练、测试和验证准确率分别达到97.67%、95%和94.04% 需要更广泛和多样化的数据集以及改进模型的可及性 通过机器学习和深度学习技术改进帕金森病的诊断和治疗 帕金森病患者 机器学习 帕金森病 MRI、语音和手写数据集分析 Meta-Park模型 MRI图像、语音和手写数据 NA
1604 2025-06-29
Patient-Specific Deep Learning Tracking Framework for Real-Time 2D Target Localization in Magnetic Resonance Imaging-Guided Radiation Therapy
2025-Jul-15, International journal of radiation oncology, biology, physics
research paper 提出了一种基于患者特异性训练的深度学习模型框架,用于磁共振成像引导的放射治疗中的实时2D目标定位 结合了图像配准变换器和自动分割CNN两种深度学习模型,采用患者特异性训练策略,显著提高了目标定位的准确性 研究仅针对胸部、腹部和骨盆的目标,未涵盖其他部位 开发高精度的实时目标定位方法,以提升MRI引导放射治疗的效果 接受0.35 T MRI-linac治疗的219名患者的1,400,000多帧cine MRI图像,以及另外35名患者的7500帧手动标记图像 digital pathology NA cine MRI image registration transformer, auto-segmentation CNN image 1,400,000多帧cine MRI图像(219名患者) + 7500帧标记图像(35名患者)
1605 2025-06-29
Fully Automated Online Adaptive Radiation Therapy Decision-Making for Cervical Cancer Using Artificial Intelligence
2025-Jul-15, International journal of radiation oncology, biology, physics
研究论文 本研究探讨了使用人工智能在宫颈癌在线自适应放射治疗(oART)中决策的可行性 提出了基于机器学习和深度学习的模型,用于识别可能从自适应重新规划中受益的治疗部分,为临床医生提供决策支持工具 研究样本量较小,仅包括24名患者,且独立评估数据集仅包含3名患者的数据 探索人工智能在宫颈癌在线自适应放射治疗决策中的应用 宫颈癌患者 数字病理 宫颈癌 fan-beam computed tomography (FBCT), 机器学习, 深度学习 支持向量机(SVM), Siamese网络 图像, 剂量数据 24名患者,671次治疗部分
1606 2025-06-29
Evaluating a large language model's accuracy in chest X-ray interpretation for acute thoracic conditions
2025-Jul, The American journal of emergency medicine
研究论文 评估大型语言模型在急诊胸部X光片解读中对急性胸部疾病的诊断准确性 首次评估ChatGPT在急诊放射学中解读胸部X光片的潜力,特别是在多种急性胸部疾病诊断中的应用 模型对某些较细微的疾病(如肺不张和肺气肿)的诊断准确性较低 探索大型语言模型在急诊胸部X光片解读中的可行性和准确性 急诊胸部X光片中的急性胸部疾病 自然语言处理 胸部疾病 大型语言模型(ChatGPT 4.0) LLM 图像 1400张来自NIH Chest X-ray数据集的图像,涵盖7种病理类别
1607 2025-06-27
Oral mucosal lesions triage via YOLOv7 models
2025-Jul, Journal of the Formosan Medical Association = Taiwan yi zhi
研究论文 本研究利用计算机视觉和深度学习技术,通过YOLOv7模型对口腔黏膜病变进行早期检测和分类 采用YOLOv7模型(特别是YOLOv7-E6和YOLOv7-D6)对口腔黏膜病变进行高效分类,并在YOLOv7-D6-CA模型中整合坐标注意力机制,显著提高了分类准确性 NA 提高口腔黏膜病变的早期检测和分类效率 口腔黏膜病变 计算机视觉 口腔癌 深度学习 YOLOv7 图像 初始数据集包含6903张白光宏观图像,后扩展至超过50,000张图像
1608 2025-06-27
Fostering Clinical Judgment and Promoting Transition Into First Clinical Rotation Through Active Learning
2025 Jul-Aug 01, Nursing education perspectives IF:0.9Q3
research paper 该研究探讨了一种新颖的互动课堂活动,旨在帮助护理学生在第一临床轮转中培养临床判断和批判性思维 引入了一种新颖的互动课堂活动,以促进护理学生从课堂知识到临床环境的过渡 研究仅涉及BSN项目第一学期课程的学生,样本范围有限 提升护理学生的临床判断能力和批判性思维,促进其向临床轮转的顺利过渡 护理学生(BSN项目第一学期课程的学生) 护理教育 NA 互动课堂活动 NA NA BSN项目第一学期课程的学生
1609 2025-06-26
Assessment of image quality on the diagnostic performance of clinicians and deep learning models: Cross-sectional comparative reader study
2025-Jul, Journal of the European Academy of Dermatology and Venereology : JEADV IF:8.4Q1
研究论文 本研究评估了不同图像质量对临床医生和深度学习模型诊断性能的影响 首次研究了HDR增强的皮肤镜图像对诊断性能的影响,并比较了临床医生与CNN模型在不同图像质量下的表现 样本量相对较小(101个皮肤病变),且仅评估了18名皮肤科医生 探究图像质量对皮肤癌诊断准确性的影响 皮肤病变图像和诊断性能 数字病理学 皮肤癌 HDR图像增强技术 CNN 图像 101个皮肤病变的303张图像(18名临床医生参与评估)
1610 2025-06-26
Quantitative Ischemic Lesions of Portable Low-Field Strength MRI Using Deep Learning-Based Super-Resolution
2025-Jul, Stroke IF:7.8Q1
研究论文 本研究评估了基于深度学习的合成超分辨率磁共振成像(SynthMRI)在便携式低场强磁共振成像(LF-MRI)中定量缺血性病变的性能提升 使用深度学习框架SCUNet(Swin-Conv-UNet)从LF-MRI图像生成SynthMRI图像,显著提高了对缺血性病变的检测和量化性能 研究为回顾性设计,且样本量相对有限(178名中风患者和104名健康对照) 评估SynthMRI在LF-MRI中检测和量化缺血性病变的诊断性能 中风患者和健康对照的LF-MRI和HF-MRI图像 数字病理 心血管疾病 深度学习超分辨率技术 SCUNet(Swin-Conv-UNet) 磁共振图像 178名中风患者和104名健康对照
1611 2025-06-26
BERTAgent: The development of a novel tool to quantify agency in textual data
2025-Jul, Journal of experimental psychology. General
研究论文 开发了一种名为BERTAgent的新工具,用于量化文本数据中的语义能动性 利用transformer架构的深度学习模型,克服了传统词计数方法对语义上下文不敏感的缺点,并考虑了能动性的强度和方向性差异 需要依赖人工编码数据进行微调,可能受限于训练数据的质量和范围 开发能够更准确量化文本中语义能动性的计算工具 文本数据中的语义能动性 自然语言处理 NA 深度学习 transformer架构(BERT) 文本 NA
1612 2025-06-26
Deep Learning Based on Ultrasound Images Differentiates Parotid Gland Pleomorphic Adenomas and Warthin Tumors
2025-Jul, Ultrasonic imaging IF:2.5Q2
研究论文 本研究利用深度学习技术基于超声图像开发自动化模型,以准确区分腮腺多形性腺瘤和沃辛瘤 首次应用深度学习模型(如ResNet18、MobileNetV3Small和InceptionV3)于超声图像分析,用于区分腮腺多形性腺瘤和沃辛瘤,并展示了优于超声医师的诊断准确性 研究样本量较小(91例患者,526张超声图像),且为回顾性研究,可能影响模型的泛化能力 开发一种基于超声图像的深度学习模型,用于准确区分腮腺多形性腺瘤和沃辛瘤 腮腺多形性腺瘤和沃辛瘤患者 数字病理 腮腺肿瘤 超声成像 CNN(包括ResNet18、MobileNetV3Small和InceptionV3) 图像 91例患者,526张超声图像
1613 2025-06-26
Deep Learning Model for Real-Time Nuchal Translucency Assessment at Prenatal US
2025-Jul, Radiology. Artificial intelligence
研究论文 开发并评估了一种基于人工智能的模型,用于实时识别和测量产前超声检查中的颈项透明层(NT)平面 提出了一种名为AIM-NT的深度学习模型,能够在产前超声检查中实时识别NT平面并测量NT厚度,与放射科医生的工作流程高度一致 研究为回顾性多中心研究,可能受到数据收集时间和范围的限制 开发并评估一种人工智能模型,用于产前超声检查中的NT平面识别和测量 产前超声检查中的颈项透明层(NT)平面 数字病理 产前筛查 超声检查 CNN 图像和视频 内部数据集包括3153个胎儿的3959张NT图像,外部数据集包括267个胎儿的267个超声视频
1614 2025-06-26
Automatic Detection of B-Lines in Lung Ultrasound Based on the Evaluation of Multiple Characteristic Parameters Using Raw RF Data
2025-Jul, Ultrasonic imaging IF:2.5Q2
研究论文 提出一种基于射频信号的肺部超声B线垂直伪影自动识别方法,通过多特征参数输入非线性支持向量机进行分类 利用射频信号而非图像数据,结合多特征参数和PCA降维,减少了对大型图像数据集的依赖,同时保持了高分类准确率 实验模型(海绵滴水模型、明胶体模)与真实肺部组织的声学特性可能存在差异 开发实时高效的肺部超声B线自动检测方法以辅助肺部疾病诊断 肺部超声中的B线伪影 医学影像分析 肺部疾病 射频信号分析、PCA降维 非线性SVM 射频信号 海绵滴水模型、玻璃珠/明胶液滴体模、体内实验数据
1615 2025-06-26
Predicting Primary Graft Dysfunction in Systemic Sclerosis Lung Transplantation Using Machine-Learning and CT Features
2025-Jul, Clinical transplantation IF:1.9Q3
研究论文 本研究利用机器学习和CT特征预测系统性硬化症肺移植后的原发性移植物功能障碍 首次在系统性硬化症患者中应用深度学习算法自动计算CT图像特征,并结合多种机器学习模型预测PGD 样本量相对较小(92例),且为单中心回顾性研究 预测系统性硬化症患者肺移植后的原发性移植物功能障碍 92例接受双侧肺移植的系统性硬化症患者 数字病理学 系统性硬化症 CT扫描、深度学习 多元逻辑回归、SVM、随机森林分类器(RFC)、多层感知机(MLP) CT图像 92例系统性硬化症肺移植患者(2007-2020年)
1616 2025-06-26
[A deep learning method for differentiating nasopharyngeal carcinoma and lymphoma based on MRI]
2025-Jul, Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology head and neck surgery
research paper 开发一种基于常规MRI的深度学习模型,用于自动分割和鉴别诊断鼻咽癌(NPC)和鼻咽淋巴瘤(NPL) 利用深度学习模型结合常规MRI数据进行自动分割和分类,提高了鼻咽癌和鼻咽淋巴瘤的鉴别诊断准确性 研究为回顾性研究,样本量有限,且仅来自单一医疗中心 开发一种自动化的深度学习模型,用于鼻咽癌和鼻咽淋巴瘤的鉴别诊断 鼻咽癌(NPC)和鼻咽淋巴瘤(NPL)患者 digital pathology nasopharyngeal carcinoma, lymphoma MRI ResNet101 image 434名患者(142名NPL患者和292名NPC患者)
1617 2025-06-24
Classifying Three-Wall Intrabony Defects from Intraoral Radiographs Using Deep Learning-Based Convolutional Neural Network Models
2025-Jul, European journal of dentistry
research paper 本研究使用基于深度学习的CNN模型对口腔内X光片中的三壁骨内缺损进行分类 首次应用多种CNN模型对三壁骨内缺损进行分类,并评估其性能 模型性能AUC值在0.7至0.77之间,仍有提升空间 开发一种自动分类三壁骨内缺损的方法以辅助牙周治疗 口腔内X光片中的三壁骨内缺损 digital pathology periodontal disease deep learning CNN (InceptionV3, InceptionResNetV2, ResNet50V2, MobileNetV3Large, EfficientNetV2B1, VGG19) image 1,369张来自556名患者的X光片
1618 2025-06-24
Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI
2025-Jul, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本研究开发并验证了使用非增强MRI的人工智能模型,以识别脊柱转移瘤的原发部位,旨在提高诊断效率 比较了专家衍生特征模型和ResNet50深度学习模型在非增强MRI上识别脊柱转移瘤原发部位的效能,发现专家模型在常见部位表现更优 研究为回顾性设计,样本量有限(514例),且仅使用非增强MRI数据 提高脊柱转移瘤原发部位的诊断效率 514例病理确诊的脊柱转移瘤患者 数字病理 癌症转移 非增强MRI(T1加权、T2加权和脂肪抑制T2序列) ResNet50 MRI图像 514例患者(开发集360例,测试集154例)
1619 2025-06-24
The Central Role of Learning in Preventing Foot Complications in Persons With Diabetes: A Scoping Review
2025-Jul, Journal of clinical nursing IF:3.2Q1
综述 本文探讨了糖尿病患者足部护理的学习过程和教育策略,并分析了不同学习过程对这些策略的影响 提出了一个理解患者学习和自我管理渐进阶段的框架,并强调了早期学习在糖尿病足部护理中的核心作用 仅纳入了英文文献,可能遗漏了其他语言的重要研究 探索糖尿病患者足部护理的学习过程和教育策略 糖尿病患者及其足部护理 糖尿病护理 糖尿病 NA NA 文献数据 906篇文章经过筛选
1620 2025-06-24
Artificial Intelligence Iterative Reconstruction for Dose Reduction in Pediatric Chest CT: A Clinical Assessment via Below 3 Years Patients With Congenital Heart Disease
2025-Jul-01, Journal of thoracic imaging IF:2.0Q3
研究论文 评估基于深度学习的重建算法AIIR在降低儿童胸部CT剂量中的表现,研究对象为3岁以下先天性心脏病患者 首次在3岁以下先天性心脏病患者中评估AIIR算法在低剂量胸部CT中的表现,并与传统HIR方法进行比较 研究仅针对3岁以下先天性心脏病患者,结果可能不适用于其他年龄段或疾病类型 评估AIIR算法在降低儿童胸部CT剂量中的效果 3岁以下先天性心脏病患者 数字病理 先天性心脏病 CT扫描 深度学习 医学影像 191名3岁以下先天性心脏病患者
回到顶部