本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
41 | 2025-04-22 |
Drug-drug interaction prediction based on graph contrastive learning and dual-view fusion
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出了一种基于图对比学习和双视图融合的药物相互作用预测模型GDF-DDI | 结合知识图谱网络和分子结构,通过双视图融合和图对比学习提取更丰富的药物嵌入信息 | 现有数据集中存在噪声和不完整数据,且数据量有限 | 提高药物相互作用(DDI)预测的性能 | 药物相互作用 | 机器学习 | NA | 图对比学习, 自监督学习 | GDF-DDI, 图卷积网络 | 分子图, 知识图谱网络 | 两个数据集 |
42 | 2025-04-22 |
In silico discovery of novel compounds for FAK activation using virtual screening, AI-based prediction, and molecular dynamics
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 利用虚拟筛选、AI预测和分子动力学模拟发现新型FAK激活化合物 | 开发了一个新流程,结合虚拟筛选、AI预测和分子动力学模拟,从1000万种化合物中筛选出10种潜在FAK激活剂,并最终确定3种最有希望的候选化合物 | 研究仅进行了计算机模拟,缺乏体外和体内实验验证 | 识别能够增强FAK活性的化合物 | FAK(黏着斑激酶)及其潜在激活剂 | 计算生物学 | 癌症 | 虚拟筛选、分子对接模拟、分子动力学模拟、深度学习 | GLAM、elEmBERT | 化学化合物数据 | 从1000万种化合物开始筛选,最终确定3种候选化合物 |
43 | 2025-04-22 |
Lung cancer detection and classification using optimized CNN features and Squeeze-Inception-ResNeXt model
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于深度学习的方法,用于利用胸部CT扫描图像对肺癌进行分类 | 结合Squeeze-Inception V3与ResNeXt的新型Squeeze-Inception-ResNeXt模型,以及使用Slime Mould Algorithm (SMA)优化CNN特征提取 | 未提及具体的数据集来源或样本多样性,可能影响模型的泛化能力 | 开发一种高效的计算机辅助诊断系统,以提高肺癌的早期检测和分类准确性 | 胸部CT扫描图像中的肺结节 | 数字病理学 | 肺癌 | 计算机断层扫描(CT) | CNN, Squeeze-Inception-ResNeXt | 图像 | NA |
44 | 2025-04-22 |
pACPs-DNN: Predicting anticancer peptides using novel peptide transformation into evolutionary and structure matrix-based images with self-attention deep learning model
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出了一种基于自注意力深度学习模型pACPs-DNN,用于准确预测抗癌肽(ACPs)和非ACPs | 将输入肽转化为基于残基能量接触矩阵(RECM)、替代矩阵表示(SMR)和位置特异性评分矩阵(PSSM)的图像表示,并采用局部二值模式(LBP)分解捕捉增强的结构和局部语义特征 | 未提及具体的数据集规模限制或模型计算资源需求 | 开发一种高效预测抗癌肽的深度学习模型,以推进癌症相关治疗药物的研发 | 抗癌肽(ACPs)和非ACPs | 机器学习 | 癌症 | 残基能量接触矩阵(RECM)、替代矩阵表示(SMR)、位置特异性评分矩阵(PSSM)、局部二值模式(LBP) | 自注意力深度神经网络(DNN) | 肽序列数据 | 未明确提及具体样本数量,但在独立数据集Ind-I和Ind-II上进行了验证 |
45 | 2025-03-12 |
Adaptive boundary-enhanced Dice loss for image segmentation
2025-Aug, Biomedical signal processing and control
IF:4.9Q1
DOI:10.1016/j.bspc.2025.107741
PMID:40061446
|
研究论文 | 本文提出了一种自适应边界增强的Dice损失函数(ABeDice),用于提高医学图像分割的准确性 | ABeDice损失函数结合了指数递归互补(ERC)函数与传统Dice损失,通过动态调整预测概率分布,优先考虑高概率区域,从而提升分割性能 | NA | 提高医学图像分割的准确性 | 医学图像 | 计算机视觉 | NA | 深度学习 | Swin-Unet | 图像 | 三个公开数据集(REFUGE、ISIC2018、RIT-Eyes) |
46 | 2025-03-11 |
In-situ dynamic correction of progressive ablation fluctuations in laser-induced breakdown spectroscopy (LIBS) using Raman spectroscopy and deep learning
2025-Aug-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127762
PMID:39999584
|
研究论文 | 本研究开发了一种基于拉曼光谱的原位动态校正方法,用于优化和校正激光诱导击穿光谱(LIBS)动态烧蚀过程中的波动特性 | 结合拉曼光谱和深度学习建模,设计了原位在线反馈校正系统,显著提高了LIBS等离子体温度的分类模型性能 | NA | 提高LIBS作为高精度分析工具的性能 | 金属样品的连续LIBS烧蚀过程 | 机器学习和光谱分析 | NA | 拉曼光谱和激光诱导击穿光谱(LIBS) | 深度卷积神经网络(CNN) | 光谱数据 | NA |