本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
661 | 2025-08-04 |
External evaluation of an open-source deep learning model for prostate cancer detection on bi-parametric MRI
2025-Aug-03, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11865-x
PMID:40753327
|
研究论文 | 本研究评估了一个开源深度学习模型在双参数MRI上检测临床显著性前列腺癌的诊断准确性 | 开源深度学习模型在双参数MRI上检测临床显著性前列腺癌的高敏感性及其可共享性 | 研究样本量较小(151名患者),且仅进行了回顾性分析 | 评估开源深度学习模型在前列腺癌检测中的诊断准确性,并促进模型共享与外部验证 | 151名生物学男性患者的双参数MRI检查数据 | 数字病理学 | 前列腺癌 | 双参数MRI (bpMRI) | 深度学习模型 (DL) | MRI图像 | 151名生物学男性患者(平均年龄65±8岁) |
662 | 2025-08-04 |
Advanced drug-target interaction prediction using convolutional graph attention networks in expert systems
2025-Aug-02, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11290-8
PMID:40751775
|
研究论文 | 本研究提出了一种结合图神经网络和新型特征选择机制的深度学习框架,用于提高药物-靶标相互作用预测的准确性 | 提出了一个名为CMEAG-ANN的卷积多层极端对抗图注意力神经网络,结合FC-GNBBPS算法,用于从DNA分子数据中提取稳健且具有生物学意义的特征 | 未提及具体局限性 | 提高药物-靶标相互作用预测的准确性和效率 | 药物和靶标蛋白 | 机器学习 | NA | DNA分子数据特征提取 | CMEAG-ANN, FC-GNBBPS | 分子指纹和PSSM注释 | 基准数据集包括approved_drug_target、ImDrug、DrugProt和Drug Combination Extraction Dataset |
663 | 2025-08-04 |
Temporal consistency-aware network for renal artery segmentation in X-ray angiography
2025-Aug-02, International journal of computer assisted radiology and surgery
IF:2.3Q2
DOI:10.1007/s11548-025-03486-y
PMID:40751864
|
研究论文 | 提出了一种名为TCA-Net的深度学习模型,用于提高X射线血管造影视频中肾动脉分割的时间一致性 | 模型结合了局部时间窗口血管增强模块和全局血管细化模块,并引入了时间感知一致性损失函数 | 未提及具体局限性 | 提高肾动脉分割的准确性以评估肾交感神经消融(RDN)手术 | X射线血管造影视频中的肾动脉 | 计算机视觉 | 心血管疾病 | 深度学习 | TCA-Net | 视频 | 195个肾动脉血管造影序列用于开发,44名患者的外部数据集用于测试 |
664 | 2025-08-04 |
Deep learning-driven incidental detection of vertebral fractures in cancer patients: advancing diagnostic precision and clinical management
2025-Aug-02, La Radiologia medica
DOI:10.1007/s11547-025-02058-z
PMID:40751896
|
研究论文 | 本研究评估了一种基于深度学习的应用在癌症患者中偶然检测椎体压缩性骨折(VCFs)的诊断性能及其减少漏诊率的潜力 | 利用深度学习技术提高椎体压缩性骨折在癌症患者中的检测率,减少临床漏诊 | 假阳性病例包括硬化性椎体转移、脊柱侧弯和椎体识别错误 | 评估深度学习应用在提高椎体压缩性骨折检测率方面的效果 | 1556名IV期癌症患者的胸腹盆CT扫描 | 数字病理 | 癌症 | 深度学习 | DL | CT扫描图像 | 1556名IV期癌症患者 |
665 | 2025-08-04 |
Possibilities and limitations of artificial intelligence in food-derived peptides
2025-Aug-02, Journal of the science of food and agriculture
IF:3.3Q2
DOI:10.1002/jsfa.70099
PMID:40751946
|
综述 | 本文探讨了人工智能在食品源性肽研究中的潜力与限制 | 评估了AI技术在食品源性肽研究中的应用,包括生物活性肽的发现、功能表征及结构-活性关系解析 | AI在预测复杂蛋白质结构和食品源性肽时面临数据集完整性、模型架构优化、可解释性限制及实验验证需求等挑战 | 探讨人工智能技术在食品源性肽研究领域的应用前景与当前限制 | 食品源性肽(FDPs) | 机器学习 | NA | 随机森林、卷积神经网络等机器学习和深度学习技术 | 随机森林、CNN | 多维数据库数据 | NA |
666 | 2025-08-04 |
xEEGNet: Towards explainable AI in EEG dementia classification
2025-Aug-02, Journal of neural engineering
IF:3.7Q2
DOI:10.1088/1741-2552/adf6e6
PMID:40752516
|
research paper | 本文提出了一种新型、紧凑且可解释的神经网络xEEGNet,用于EEG数据分析,特别针对痴呆症分类 | xEEGNet通过大幅减少参数数量(仅168个参数,比ShallowNet少200倍)实现了可解释性,同时避免了过拟合,并在性能上与传统模型相当 | 研究主要关注阿尔茨海默病和额颞叶痴呆的分类,对其他神经系统疾病的适用性有待进一步验证 | 开发一种可解释的神经网络模型,用于EEG数据的痴呆症分类 | 阿尔茨海默病和额颞叶痴呆患者的EEG数据 | machine learning | geriatric disease | EEG数据分析 | xEEGNet(基于EEGNet家族的改进模型) | EEG信号 | NA |
667 | 2025-08-04 |
Diagnostic Accuracy and Interobserver Reliability of Rotator Cuff Tear Detection With Ultrasonography Are Improved With Attentional Deep Learning
2025-Aug, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
IF:4.4Q1
DOI:10.1016/j.arthro.2024.12.024
PMID:39725049
|
research paper | 本研究通过改进YOLOv7模型,加入卷积块注意力模块(CBAM),开发了YOLOv7-CBAM模型,用于自动识别撕裂或完整的肩袖肌腱,以辅助医生通过超声诊断肩袖病变 | 提出了一种结合CBAM的改进YOLOv7模型(YOLOv7-CBAM),用于提高肩袖撕裂检测的准确性和观察者间可靠性 | 研究样本量相对较小(280名患者),且仅针对特定类型的肩袖病变 | 提高肩袖撕裂超声诊断的准确性和观察者间可靠性 | 肩袖撕裂或完整的肌腱 | computer vision | 肩袖病变 | 超声成像 | YOLOv7-CBAM | image | 280名患者,840张超声图像 |
668 | 2025-08-04 |
Editorial Commentary: Imaging Results in Data Usefully Analyzed by Artificial Intelligence Machine Learning
2025-Aug, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association
IF:4.4Q1
DOI:10.1016/j.arthro.2025.02.024
PMID:40021066
|
评论 | 本文讨论了人工智能机器学习在医学影像分析中的应用及其潜力 | 提出了一种有效的三步方法(检测器、注意力模块和可解释性)来优化影像分析,并强调了深度学习在减少观察者间变异性和提高诊断准确性方面的作用 | 需要外部验证以确定模型在单一机构之外的泛化能力 | 探讨人工智能机器学习在医学影像分析中的临床应用及其优化方法 | 医学影像数据 | 计算机视觉 | NA | 深度学习 | NA | 图像 | NA |
669 | 2025-08-04 |
Applications of machine learning in glaucoma diagnosis based on tabular data: a systematic review
2025-Aug-01, BMC biomedical engineering
DOI:10.1186/s42490-025-00095-3
PMID:40745560
|
系统综述 | 本文系统评估了机器学习技术在青光眼诊断中的应用,分析了其有效性并识别了最有前景的方法和数据集 | 通过系统综述方法,全面评估了多种机器学习模型在青光眼诊断中的表现,并识别了影响诊断准确性的关键数据类型 | 数据不平衡和样本量有限影响了模型的泛化能力 | 评估机器学习在青光眼诊断中的应用效果 | 青光眼诊断 | 机器学习 | 青光眼 | 光学相干断层扫描(OCT)、视野(VF)测试 | SVM, DL, random forest, ensemble methods | 表格数据 | 35项研究 |
670 | 2025-08-04 |
A Decision Support System Based on multi-head convolutional and Recurrent Neural Networks for assisting physicians in diagnosing ADHD
2025-Aug-01, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.110826
PMID:40752402
|
研究论文 | 本研究提出了一种基于多头卷积和循环神经网络的决策支持系统MCRNet,用于辅助医生诊断注意力缺陷多动障碍(ADHD) | MCRNet采用了一种创新的两阶段多头方法进行特征提取,提高了从原始EEG信号中提取特征和分类的能力 | 未来工作需要关注MCRNet的可解释性,并在更多EEG数据集上测试其有效性 | 开发一种客观可靠的ADHD诊断工具 | 儿童和青少年的注意力缺陷多动障碍(ADHD) | 数字病理学 | 注意力缺陷多动障碍 | EEG和深度学习技术 | 多头卷积和循环神经网络(MCRNet) | EEG信号 | 未提及具体样本数量 |
671 | 2025-08-04 |
Shaping the Future of Personalized Therapy in Bladder Cancer Using Artificial Intelligence
2025-Aug-01, European urology focus
IF:4.8Q1
DOI:10.1016/j.euf.2025.07.011
PMID:40753031
|
review | 本文综述了人工智能在膀胱癌个性化治疗中的应用及其潜力 | 探讨了AI在膀胱癌管理各步骤中的应用,包括检测、分级、分期、风险分层、治疗和结果预测 | AI在膀胱癌临床工作流程中的广泛应用仍面临重大障碍 | 实现AI驱动的膀胱癌个性化治疗 | 膀胱癌患者 | digital pathology | bladder cancer | machine learning, deep learning | NA | NA | NA |
672 | 2025-08-03 |
Precise dental caries segmentation in X-rays with an attention and edge dual-decoder network
2025-Aug, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03318-w
PMID:39961911
|
研究论文 | 本文提出了一种名为AEDD-Net的新型网络,结合注意力机制和双解码器结构,以提高龋齿边界分割的性能 | AEDD-Net集成了空洞空间金字塔池化与跨坐标注意力机制,有效融合全局和多尺度特征,并引入了专用的边界生成模块和创新边界损失函数 | NA | 提高龋齿在X光图像中的精确分割性能,特别是在复杂边界的分割上 | 龋齿的X光图像 | 计算机视觉 | 龋齿 | 深度学习 | AEDD-Net(结合注意力机制和双解码器结构的网络) | 图像 | NA |
673 | 2025-08-03 |
TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset
2025-Aug, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03278-7
PMID:39964658
|
研究论文 | 本文提出了一种名为TongueTransUNet的方法,用于有效分割舌头轮廓,以理解语言行为并作为生物反馈应用于不同领域 | 结合UNet、Vision Transformer (ViT)和潜在空间对比损失构建混合架构,利用动态管理数据集提高分割准确性和质量 | 需要人工专家验证新输入数据,可能增加时间和人力成本 | 通过舌头轮廓分割理解语言行为并作为生物反馈 | 舌头轮廓 | 医学图像分析 | NA | 超声成像 | UNet, Vision Transformer (ViT) | 医学图像 | 动态管理数据集(具体数量未提及) |
674 | 2025-08-03 |
Automatic placement of simulated dental implants within CBCT images in optimum positions: a deep learning model
2025-Aug, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03327-9
PMID:40009142
|
研究论文 | 本研究提出了一种基于深度学习的框架,用于在CBCT图像中自动放置模拟牙科种植体至最佳位置 | 采用两阶段深度学习框架(YOLOv11进行标记检测和相邻骨骼识别,随后进行分类和回归以预测种植体参数),实现牙科种植体的自动定位和参数预测 | 标记检测阶段的F-score仅为59%,种植体位置预测的平均绝对误差在11.931至15.954之间,骨内直径和长度的预测精度分别为76%和59% | 开发自动化系统以优化牙科种植体的放置过程,减少对牙医专业知识的依赖并提高效率 | CBCT图像中的牙科种植体位置及参数(骨内长度和直径) | 计算机视觉 | 牙科疾病 | 深度学习 | YOLOv11 | 3D CBCT图像 | 未明确说明样本数量 |
675 | 2025-08-03 |
New AI explained and validated deep learning approaches to accurately predict diabetes
2025-Aug, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-025-03338-6
PMID:40035798
|
研究论文 | 提出并验证了两种新型深度学习模型LeDNet和HiDenNet,用于准确预测糖尿病 | 结合LeNet、Dual Attention Network、highway network和DenseNet的创新模型,解决了现有模型精度不足、类别不平衡和可解释性差的问题 | 使用的Diabetes Health Indicators数据集本身存在类别不平衡问题 | 提高糖尿病早期预测的准确性和模型可解释性 | 糖尿病预测 | 机器学习 | 糖尿病 | 多数加权少数过采样技术、K折交叉验证、LIME和SHAP解释技术 | LeDNet(结合LeNet和Dual Attention Network)、HiDenNet(结合highway network和DenseNet) | 结构化健康指标数据 | Diabetes Health Indicators数据集(具体数量未提及) |
676 | 2025-08-03 |
Utility of artificial intelligence in radiosurgery for pituitary adenoma: a deep learning-based automated segmentation model and evaluation of its clinical applicability
2025-Aug-01, Journal of neurosurgery
IF:3.5Q1
DOI:10.3171/2024.12.JNS242167
PMID:40250054
|
研究论文 | 本研究开发了一种基于深度学习的自动分割模型,用于MRI扫描中的垂体腺瘤分割,以评估其在立体定向放射外科计划中的准确性和临床适用性 | 利用nnU-Net模型进行垂体腺瘤自动分割,并评估其在临床环境中的准确性和效率 | 预测分割的评分低于原始手动分割组,且部分病例仍需手动修改 | 开发并评估用于立体定向放射外科计划的自动分割模型 | 垂体腺瘤患者的MRI扫描数据 | 数字病理 | 垂体腺瘤 | MRI扫描 | nnU-Net | 图像 | 582名患者的MRI扫描用于训练,146名患者用于评估 |
677 | 2025-08-03 |
Enhancing Brain Metastases Detection and Segmentation in Black-Blood MRI Using Deep Learning and Segment Anything Model (SAM)
2025-Aug, Yonsei medical journal
IF:2.6Q1
DOI:10.3349/ymj.2024.0198
PMID:40709680
|
研究论文 | 本研究探讨了深度学习架构和后处理方法在黑血磁共振图像中检测和分割脑转移瘤的效果和准确性 | 结合生成对抗网络(GAN)改进U-Net模型,并首次将Segment Anything Model(SAM)作为后处理步骤应用于脑转移瘤的分割 | 样本量较小(仅50例患者),且未评估模型在不同扫描参数或设备间的泛化能力 | 提高黑血磁共振图像中脑转移瘤的检测和分割精度 | 脑转移瘤患者(50例)的黑血磁共振图像 | 数字病理 | 脑转移瘤 | MRI | 改进的U-Net、GAN、SAM | 医学影像 | 50例患者(40例训练集,10例测试集) |
678 | 2025-08-03 |
Deep Learning-Based Landmark Detection Model for Multiple Foot Deformity Classification: A Dual-Center Study
2025-Aug, Yonsei medical journal
IF:2.6Q1
DOI:10.3349/ymj.2024.0246
PMID:40709679
|
研究论文 | 介绍了一种基于热图嵌套热图(HIH)的深度学习模型,用于通过负重足部X光片自动诊断多种足部畸形 | 提出了HIH模型,相比基线模型FlatNet在准确率、灵敏度、特异性等多个指标上表现更优,且具有更快的训练和推理速度 | 研究为回顾性设计,且仅在两所医疗中心进行验证 | 开发自动化工具以解决足部畸形诊断中人工方法劳动强度大和结果易变的问题 | 负重足部X光片(前后位和侧位图像) | 数字病理学 | 足部畸形 | 深度学习 | HIH(热图嵌套热图模型) | 医学影像(X光片) | 训练集:806名患者的3097张图像;验证集:196名患者的747张图像;外部验证集:270名患者的1056张图像 |
679 | 2025-08-03 |
When deep learning is not enough: artificial life as a supplementary tool for segmentation of ultrasound images of breast cancer
2025-Aug, Medical & biological engineering & computing
IF:2.6Q3
DOI:10.1007/s11517-024-03026-x
PMID:38498125
|
研究论文 | 本文介绍了一种结合深度学习和多代理人工生命的新型混合模型,用于提高超声图像中乳腺癌分割的准确性和适应性 | 提出了一种独特的深度学习与多代理人工生命相结合的混合方法,能够处理未见过的数据并在小数据集上实现高精度 | 虽然模型在多种复杂度图像上表现良好,但训练数据仍主要集中在低复杂度图像上,可能影响对高复杂度图像的泛化能力 | 开发一种高精度的超声图像分割方法,用于乳腺癌诊断和超声引导活检 | 乳腺超声图像中的肿瘤分割 | 数字病理 | 乳腺癌 | 深度学习与多代理人工生命结合技术 | DL-AL混合模型 | 图像 | 1264张超声图像,患者年龄范围22-73岁 |
680 | 2025-08-03 |
Explaining care need assessment surveys: qualitative and quantitative evaluation of state-of-the-art local and global explainable artificial intelligence methods
2025-Aug, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooaf064
PMID:40741010
|
研究论文 | 本文通过可解释人工智能(XAI)方法,从大量护理福利申请中分析影响护理需求的关键因素 | 结合传统方法和基于transformer的深度学习模型,系统地比较了不同XAI方法在护理需求评估中的应用效果 | XAI结果可能变得难以处理,且仅依赖现有评估结果作为标注 | 探索影响护理需求的因素,支持护理需求评估工作 | 72,000份德国护理福利申请文本 | 自然语言处理 | 老年疾病 | transformer模型,词袋模型 | transformer | 文本 | 72,000份护理福利申请 |