本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
821 | 2025-07-05 |
Multimodal deep learning: tumor and visceral fat impact on colorectal cancer occult peritoneal metastasis
2025-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11450-2
PMID:39961863
|
研究论文 | 本研究提出了一种多模态深度学习方法,研究肿瘤和内脏脂肪对结直肠癌隐匿性腹膜转移的影响 | 基于ResNet18构建的多尺度特征融合网络(MSFF-Net)能够利用CT图像中的肿瘤和内脏脂肪特征来检测结直肠癌的隐匿性腹膜转移 | NA | 预测结直肠癌患者的腹膜转移 | 结直肠癌患者 | 数字病理 | 结直肠癌 | CT扫描 | ResNet18, 随机森林(RF) | 图像 | 内部测试集和外部测试集 |
822 | 2025-07-05 |
StructVPR++: Distill Structural and Semantic Knowledge With Weighting Samples for Visual Place Recognition
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3556859
PMID:40168193
|
research paper | 提出StructVPR++框架,通过分割引导蒸馏将结构和语义知识嵌入RGB全局表示,以在视觉地点识别任务中实现准确性和效率的良好平衡 | 解耦全局描述符中的标签特定特征,实现图像对之间的显式语义对齐,无需部署时的分割;引入样本加权蒸馏策略,优先处理可靠训练对并抑制噪声对 | 未明确提及具体局限性 | 提升视觉地点识别的准确性和效率,填补全局检索与重排序之间的差距 | 视觉地点识别任务,面向自动驾驶和机器人技术 | computer vision | NA | 分割引导蒸馏,样本加权蒸馏策略 | 深度学习 | RGB图像 | 四个基准测试集 |
823 | 2025-07-05 |
Spatiotemporal Observer Design for Predictive Learning of High-Dimensional Data
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3556669
PMID:40168192
|
research paper | 本文提出了一种基于观测器理论的深度学习架构,用于高维数据的时空预测学习 | 结合动态系统领域知识设计深度学习模型,提供泛化误差界和收敛保证,并引入动态正则化以更好地学习系统动态 | 未提及具体应用场景或数据类型的限制 | 解决时空预测学习中的理论保证问题 | 高维时空数据 | machine learning | NA | deep learning | Spatiotemporal Observer | spatiotemporal data | NA |
824 | 2025-07-05 |
Revisiting One-Stage Deep Uncalibrated Photometric Stereo via Fourier Embedding
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3557245
PMID:40173071
|
research paper | 本文提出了一种名为Fourier Uncalibrated Photometric Stereo Network (FUPS-Net)的单阶段深度无标定光度立体网络,用于未知光照方向下的非朗伯体物体 | 通过傅里叶变换网络隐式学习光照特征,而非使用分离的光照估计网络,解决了传统两阶段方法中光照误差传播的问题 | 未明确提及具体限制,但可能对复杂光照条件下的性能有待验证 | 改进无标定光度立体方法,实现更准确的表面法线估计 | 非朗伯体物体 | computer vision | NA | 傅里叶变换 | FUPS-Net | image | 合成和真实数据集 |
825 | 2025-07-05 |
Revisiting Supervised Learning-Based Photometric Stereo Networks
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3557498
PMID:40178960
|
research paper | 本文通过重新审视现有方法的深度特征、特征编码策略和网络架构,揭示了监督学习光度立体网络如何解决未知反射和全局光照效应的挑战,并提出了ESSENCE-Net方法 | 提出了ESSENCE-Net,采用易优先编码策略有效编码深度阴影特征,通过阴影监督增强阴影特征,并利用空间上下文感知注意力准确解码法线 | 未提及 | 揭示监督学习光度立体网络如何解决未知反射和全局光照效应的挑战 | 光度立体网络 | computer vision | NA | 监督学习 | ESSENCE-Net | 图像 | 三个基准数据集 |
826 | 2025-07-05 |
Unknown-Aware Bilateral Dependency Optimization for Defending Against Model Inversion Attacks
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3558267
PMID:40184277
|
研究论文 | 本文提出了一种双边依赖优化策略(BiDO)及其升级框架(BiDO+),用于防御模型反转攻击并提升模型在开放世界中的分布外检测能力 | 提出了双边依赖优化策略(BiDO),通过最小化输入特征与潜在表示之间的依赖关系,同时最大化潜在表示与标签之间的依赖关系,解决了传统单边依赖优化策略在模型鲁棒性和分类性能之间的权衡问题 | 使用BiDO训练的模型在分布外(OOD)检测方面的能力有所下降,这可能带来安全风险 | 防御模型反转攻击,同时提升模型在开放世界中的分布外检测能力 | 深度学习分类器及其在隐私保护和安全性方面的表现 | 机器学习 | NA | 双边依赖优化策略(BiDO) | 深度学习分类器 | NA | NA |
827 | 2025-07-05 |
Recent Advances in Artificial Intelligence for Precision Diagnosis and Treatment of Bladder Cancer: A Review
2025-Aug, Annals of surgical oncology
IF:3.4Q1
DOI:10.1245/s10434-025-17228-6
PMID:40221553
|
review | 本文综述了人工智能在膀胱癌精准诊断和治疗中的最新研究进展与前景 | 探讨了深度学习技术在膀胱癌临床任务中的显著进展,包括肿瘤检测、分子亚型识别、肿瘤分期与分级、预后预测及复发评估 | NA | 综述人工智能技术在膀胱癌精准诊断和治疗中的应用 | 膀胱癌的诊断和治疗 | digital pathology | bladder cancer | deep learning | NA | NA | NA |
828 | 2025-07-05 |
Hadamard Product in Deep Learning: Introduction, Advances and Challenges
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3560423
PMID:40232897
|
综述 | 本文首次全面综述了深度学习中Hadamard积的应用,提出了其在四个主要领域的分类,并探讨了其计算效率与表示能力之间的权衡 | 首次系统性地分析了Hadamard积作为核心架构原语的应用,并提出了其在深度学习中的四大应用领域分类 | 未涉及Hadamard积在特定深度学习模型中的性能对比实验 | 探讨Hadamard积在深度学习中的基础作用及其应用潜力 | 深度学习中的Hadamard积运算 | 机器学习 | NA | NA | NA | 多模态数据 | NA |
829 | 2025-07-05 |
Constraint Boundary Wandering Framework: Enhancing Constrained Optimization With Deep Neural Networks
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3560762
PMID:40232899
|
研究论文 | 提出了一种基于深度神经网络的约束边界游走框架(CBWF),用于解决约束优化问题 | 引入了受主动集方法启发的边界游走策略,增强了等式约束的可行性,并将Lipschitz常数作为可学习参数 | NA | 解决约束优化问题的可扩展性挑战 | 约束优化问题 | 机器学习 | NA | 深度神经网络(DNNs) | DNN | 合成数据集和ACOPT数据集 | NA |
830 | 2025-07-05 |
PointNorm-Net: Self-Supervised Normal Prediction of 3D Point Clouds via Multi-Modal Distribution Estimation
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3562051
PMID:40238601
|
research paper | 提出了一种名为PointNorm-Net的自监督深度学习框架,用于预测3D点云的法线 | 首次提出了一种自监督深度学习框架PointNorm-Net,采用三阶段多模态法线分布估计范式 | 未提及具体局限性 | 解决3D点云法线预测在真实场景中的性能下降问题 | 3D点云数据 | computer vision | NA | 自监督学习 | PointNorm-Net | 3D点云 | 三个真实世界数据集 |
831 | 2025-07-05 |
Graph Anomaly Detection in Time Series: A Survey
2025-Aug, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3566620
PMID:40315075
|
综述 | 本文对基于图的时间序列异常检测(G-TSAD)进行了全面和最新的回顾 | 探讨了图表示在时间序列数据中的潜力及其对促进异常检测的贡献,并回顾了最先进的图异常检测技术 | 讨论了每种方法的局限性以及当前领域面临的技术和应用挑战 | 回顾和总结基于图的时间序列异常检测技术 | 时间序列数据及其异常检测 | 机器学习 | NA | 图表示和深度学习架构 | NA | 时间序列数据 | NA |
832 | 2025-07-05 |
Plexus and Peripheral Nerve MR Imaging: Advances and Applications: MR Neurography: Sequence Possibilities and Recent Advances
2025-Aug, Magnetic resonance imaging clinics of North America
IF:1.5Q3
DOI:10.1016/j.mric.2025.03.001
PMID:40610154
|
综述 | 本文综述了磁共振神经成像(MRN)在诊断和管理神经丛及周围神经疾病中的最新进展 | 强调了3T成像、线圈选择、脂肪和血管抑制策略以及基于深度学习的重建技术以提高图像分辨率 | 未提及具体的研究限制 | 探讨MRN技术在临床实践中的应用和未来发展方向 | 神经丛(如臂丛、腰骶丛)和周围神经 | 数字病理学 | 周围神经疾病 | MRN、3T成像、7T MR成像、定量扩散成像 | 深度学习 | 图像 | NA |
833 | 2025-07-05 |
X-ArecaNet: Dataset of arecanut X-ray images for deep learning applications
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111721
PMID:40612478
|
research paper | 介绍了一个用于槟榔分级的X射线图像数据集,并建立了质量检查标准的基准 | 首次提出了一个基于X射线图像的槟榔数据集,用于非破坏性内部检查和质量分级 | 数据集未进行图像增强,且样本量相对较小(共900张图像) | 为槟榔行业提供一个用于分级的X射线图像数据集,并建立质量检查标准 | 槟榔的X射线图像 | computer vision | NA | X-ray成像 | YOLOv5 | image | 900张X射线图像(3个等级各300张) |
834 | 2025-07-05 |
Urban tree species benchmark dataset for time series classification
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111777
PMID:40612477
|
research paper | 该研究提出了一个基于多源光学卫星图像时间序列的城市树种分类基准数据集 | 创建了一个包含斯特拉斯堡市20种最常见树种的45,084棵树的基准数据集,并提供了三种基于InceptionTime的预训练模型 | 数据集仅覆盖斯特拉斯堡市的树种,可能无法代表其他地区的树种多样性 | 推进利用卫星图像时间序列和深度学习进行城市植被监测 | 城市树种 | computer vision | NA | 卫星图像时间序列分析 | InceptionTime, Dual-InceptionTime | 卫星图像时间序列 | 45,084棵树,涵盖20个常见树种 |
835 | 2025-07-04 |
DunHuangStitch: Unsupervised Deep Image Stitching of Dunhuang Murals
2025-Aug, IEEE transactions on visualization and computer graphics
IF:4.7Q1
DOI:10.1109/TVCG.2024.3398289
PMID:38717890
|
研究论文 | 本文提出了一种基于深度学习的敦煌壁画图像拼接方法,旨在解决传统方法在低纹理壁画拼接中的局限性 | 首次将深度学习应用于敦煌壁画拼接,设计了渐进回归图像对齐网络和特征差分重建软编码接缝拼接网络,并引入了软编码接缝质量评估方法 | 未明确提及具体局限性,但暗示传统方法在特征点检测精度和低纹理壁画拼接方面存在不足 | 为敦煌壁画的数字化存储和保存提供技术支持 | 敦煌壁画 | 计算机视觉 | NA | 深度学习 | 渐进回归图像对齐网络、特征差分重建软编码接缝拼接网络 | 图像 | 构建了两个壁画拼接数据集(未明确样本数量) |
836 | 2025-07-04 |
Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics
2025-Aug-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001158
PMID:39919383
|
研究论文 | 本研究评估了深度学习重建与传统加速技术在3T脑MRI中的结合应用,及其对图像质量和定量扩散指标的影响 | 结合深度学习重建(DRB)与传统加速技术,显著提高了ssEPI DWI序列的图像质量并缩短了采集时间 | 在部分切片中观察到DRB重建序列产生更多伪影,且随着加速程度和DRB应用的增加,ADC值的差异增大 | 评估深度学习重建与传统加速技术结合对3T脑MRI图像质量和定量扩散指标的影响 | 24名患者的脑MRI数据 | 数字病理 | NA | 单次激发平面回波成像(ssEPI)扩散加权成像(DWI) | 深度学习(Deep Resolve Boost, DRB) | MRI图像 | 24名患者 |
837 | 2025-07-04 |
Moving Beyond CT Body Composition Analysis: Using Style Transfer for Bringing CT-Based Fully-Automated Body Composition Analysis to T2-Weighted MRI Sequences
2025-Aug-01, Investigative radiology
IF:7.0Q1
DOI:10.1097/RLI.0000000000001162
PMID:39961134
|
研究论文 | 本研究提出了一种利用深度学习技术从T2加权MRI序列中自动进行身体成分分析的方法 | 通过CycleGAN将CT分割映射到合成的MR图像上,并利用nnU-Net V2模型进行3D和2D分割,实现了从CT到MRI的身体成分分析方法的迁移 | 研究中仅使用了30对合成数据对进行初步训练,样本量相对较小 | 开发一种自动化方法,用于从T2加权MRI序列中提取身体成分参数 | 120名患者的T2加权MRI序列(46%为女性,中位年龄56岁) | 数字病理学 | NA | CycleGAN, nnU-Net V2 | CNN(具体为nnU-Net V2的3D和2D版本) | 医学影像(T2加权MRI序列) | 120名患者的MRI数据 |
838 | 2025-07-04 |
New approaches to lesion assessment in multiple sclerosis
2025-Aug-01, Current opinion in neurology
IF:4.1Q2
DOI:10.1097/WCO.0000000000001378
PMID:40377692
|
review | 总结人工智能驱动的病变分割和新型神经影像技术在多发性硬化症(MS)病变识别与表征中的最新进展 | 人工智能尤其是深度学习方法革新了MS病变评估和分割,提高了准确性、可重复性和效率,同时新型神经影像技术如QSM、χ-separation成像和SANDI提供了对病变病理的更深入理解 | NA | 总结人工智能和新型神经影像技术在MS病变评估中的应用及其对临床和研究的潜在影响 | 多发性硬化症(MS)病变 | 数字病理 | 多发性硬化症 | 人工智能驱动的病变分割、定量磁化率成像(QSM)、χ-separation成像、SANDI、PET | 深度学习 | 神经影像数据 | NA |
839 | 2025-07-04 |
A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET
2025-Aug-01, Clinical nuclear medicine
IF:9.6Q1
DOI:10.1097/RLU.0000000000005966
PMID:40524364
|
研究论文 | 本研究利用残差3D卷积神经网络(3DCNN)开发了一个稳健的模型,通过FDG-PET预测淀粉样蛋白β阳性 | 利用残差3DCNN模型从FDG-PET图像中学习复杂的3D空间模式,显著减少了对站点协调预处理的依赖 | 样本量相对较小(187名患者用于模型开发,99名患者用于评估),且在不同种族和站点协调水平的数据集上表现存在差异 | 开发一个能够通过FDG-PET预测淀粉样蛋白β阳性的深度学习模型,以辅助阿尔茨海默病的诊断 | 从认知正常到痴呆及其他认知障碍的患者 | 数字病理学 | 阿尔茨海默病 | FDG-PET, T1-weighted MRI, 11 C-Pittsburgh compound B (PiB) PET扫描 | 残差3DCNN | 图像 | 187名患者用于模型开发,99名患者用于评估 |
840 | 2025-07-04 |
Grapes leaf disease dataset for precision agriculture
2025-Aug, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.111716
PMID:40599426
|
research paper | 该论文提供了一个包含2,726张高质量葡萄叶病害图像的大型数据集,用于精准农业中的病害检测 | 提供了高质量、精确标注的葡萄叶病害图像数据集,并通过ResNet-18算法验证了数据集的适用性 | 数据集仅来自印度纳西克的葡萄农场,可能无法涵盖所有地理和气候条件下的病害情况 | 旨在通过AI模型提升葡萄病害的自动化检测、分类和预测能力 | 葡萄叶病害图像 | computer vision | 葡萄病害 | 图像采集与标注 | ResNet-18 | image | 2,726张葡萄叶病害图像 |