深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202508-202508] [清除筛选条件]
当前共找到 936 篇文献,本页显示第 861 - 880 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
861 2025-06-19
Deep learning predicts the effect of neoadjuvant chemotherapy for patients with triple negative breast cancer
2025-Aug, Journal of pathology informatics
research paper 本研究利用深度学习技术预测三阴性乳腺癌患者新辅助化疗的效果 首次基于术前活检H&E切片的全幻灯片图像,使用深度学习预测新辅助化疗效果 样本量相对较小,特别是中度和不良反应组病例数量不足 预测三阴性乳腺癌患者新辅助化疗的治疗效果 三阴性乳腺癌患者 digital pathology breast cancer H&E染色 CNN image 训练集205名患者的221份活检样本,测试集50名患者的52份活检样本
862 2025-06-18
Keystone microbial taxa identified by deep learning reveal mechanisms of phosphorus stoichiometric homeostasis in submerged macrophytes under different hydrodynamic states
2025-Aug-15, Water research IF:11.4Q1
研究论文 本研究通过深度学习识别关键微生物类群,探讨了不同水动力状态下沉水植物磷化学计量稳态的机制 开发了基于深度学习的Keystoneness Taxa Identification (DLKTI)框架,用于识别关键微生物类群,并揭示了这些类群对沉水植物根际磷代谢的影响 研究仅针对两种沉水植物(Vallisneria natans和Myriophyllum spicatum),可能无法推广到其他植物或生态系统 优化植物修复策略,提高水生生态系统富营养化管理的效率 沉水植物(Vallisneria natans和Myriophyllum spicatum)及其根际微生物群落 生态学与深度学习 NA 深度学习 DLKTI框架 微生物群落数据 NA
863 2025-06-18
Efficient urban flood control and drainage management framework based on digital twin technology and optimization scheduling algorithm
2025-Aug-15, Water research IF:11.4Q1
研究论文 本文提出了一种基于数字孪生技术和优化调度算法的高效城市防洪排水管理框架 结合数字孪生实验平台、深度学习和多目标优化算法,优化排水泵调度规则,实现实时数据采集和虚拟-现实交互 未提及具体实施中的硬件限制或数据获取的潜在问题 提升城市防洪排水的综合管理能力 城市防洪排水系统 数字孪生技术 NA PLC技术、Unity3D引擎、深度学习、多目标优化算法 深度学习模型 实时监测数据 不同河流流入和排水操作场景下的数据
864 2025-06-18
Comprehensive smartphone image dataset for fish species identification in Bangladesh's freshwater ecosystems
2025-Aug, Data in brief IF:1.0Q3
research paper 本文介绍了一个用于孟加拉国淡水生态系统鱼类物种识别的智能手机图像数据集 提供了一个包含24,925张图像、涵盖21种淡水鱼类物种的全面数据集,支持鱼类物种识别和生物多样性研究 数据集仅涵盖孟加拉国的淡水鱼类,可能不适用于其他地区或海洋鱼类 为水生生物多样性研究、渔业管理以及机器学习模型开发提供数据支持 孟加拉国淡水生态系统中的21种常见鱼类 computer vision NA 智能手机图像采集 deep learning image 24,925张图像,涵盖21种鱼类
865 2025-06-18
False data injection attack dataset for classification, identification, and detection for IIoT in Industry 5.0
2025-Aug, Data in brief IF:1.0Q3
research paper 该论文介绍了UKMNCT_IIoT_FDIA数据集,用于分类、识别和检测工业5.0中IIoT的虚假数据注入攻击 提出了一个独立且全面的数据集,覆盖多种网络配置和攻击场景,以反映IIoT中FDI攻击的动态特性 未提及具体的数据集规模或实验环境的局限性 提高工业5.0中IIoT环境的安全性,通过有效检测虚假数据注入攻击 工业物联网(IIoT)设备和虚假数据注入(FDI)攻击 machine learning NA machine learning (ML) and deep learning (DL) algorithms NA network configurations and attack scenarios NA
866 2025-06-18
High-resolution RGB image dataset for wheat seed varietal identification and purity assessment
2025-Aug, Data in brief IF:1.0Q3
research paper 该论文介绍了一个公开可用的高分辨率小麦种子图像数据集,用于小麦品种识别和纯度评估 提供了一个特定地区的高分辨率小麦种子图像数据集,填补了现有数据的空白 数据集仅包含巴基斯坦三个主要小麦品种,可能无法代表所有地区的小麦品种 解决小麦种子品种识别和纯度评估的问题,以提高小麦产量 小麦种子(Akbar-19, Dilkash-20, Urooj-22三个品种) computer vision NA NA NA image 每个品种125粒纯种种子,共375粒
867 2025-06-17
Attain: Inclusive annotated pavement distress types and severity dataset
2025-Aug, Data in brief IF:1.0Q3
研究论文 介绍了一个名为Attain的多样化、注释详尽的路面病害数据集,用于支持机器学习和深度学习模型在路面病害分类和目标检测中的开发 数据集包含10种不同的路面病害类别,每种病害还标注了低、中、高三个严重程度级别,且使用智能手机摄像头收集数据显著降低了数据收集成本 数据集仅包含2293张图像,可能不足以覆盖所有可能的路面条件和病害类型 促进自动路面病害检测系统的开发,以提高路面维护过程的效率和准确性 路面病害图像 计算机视觉 NA 智能手机摄像头图像采集 NA 图像 2293张图像,包含19,761个病害实例
868 2025-06-16
Automatic deep learning segmentation of mandibular periodontal bone topography on cone-beam computed tomography images
2025-Aug, Journal of dentistry IF:4.8Q1
research paper 本研究评估了一种基于多阶段分割残差网络(SegResNet)的深度学习模型在自动分割III期和IV期牙周炎患者锥形束计算机断层扫描(CBCT)图像中的性能 提出了一种基于SegResNet的深度学习模型,用于自动分割牙周炎患者的CBCT图像,相比半自动方法减少了47倍的分割时间 模型在牙周区域颊侧的一致性较低,需提高其稳健性以增强整体可靠性和一致性 评估深度学习模型在牙周炎患者CBCT图像分割中的性能和准确性 III期和IV期牙周炎患者的CBCT图像 digital pathology periodontitis CBCT SegResNet image 70例CBCT扫描用于训练和验证,10例独立CBCT扫描用于测试
869 2025-06-16
Fully automated evaluation of condylar remodeling after orthognathic surgery in skeletal class II patients using deep learning and landmarks
2025-Aug, Journal of dentistry IF:4.8Q1
研究论文 本研究开发了一种基于深度学习和解剖标志的全自动方法,用于评估骨骼II类患者正颌手术后的髁突重塑 结合解剖标志引导的分割与配准,实现了髁突重塑评估的全自动化流程,效率提升150倍 研究样本量未明确说明,且方法在极端重塑情况下的适用性有待验证 开发高效准确的正颌手术预后评估工具 骨骼II类正颌手术患者的髁突结构 数字病理 颞下颌关节紊乱 CT成像、ICP配准算法 V-Net 3D医学影像 NA
870 2025-06-15
Machine learning-based approaches for distinguishing viral and bacterial pneumonia in paediatrics: A scoping review
2025-Aug, Computer methods and programs in biomedicine IF:4.9Q1
综述 本文综述了基于机器学习的儿科病毒性和细菌性肺炎分类研究 总结了机器学习在儿科肺炎分类中的应用现状,并指出了当前研究的局限性 研究主要依赖单一数据集(Kermany数据集),且方法学存在较大变异性,限制了结果的普适性和临床应用性 评估机器学习技术在区分儿科病毒性和细菌性肺炎方面的应用效果 0-18岁通过胸部X光确诊的肺炎患儿 数字病理学 肺炎 机器学习(ML)和深度学习(DL) CNN 胸部X光图像 35项研究(主要使用Kermany数据集)
871 2025-06-14
Deep learning reconstruction for T2-weighted and contrast-enhanced T1-weighted magnetic resonance enterography imaging in patients with Crohn's disease: Assessment of image quality and clinical utility
2025-Aug, Clinical imaging IF:1.8Q3
research paper 研究深度学习重建在克罗恩病患者磁共振肠成像中T2加权和对比增强T1加权图像的质量及临床效用 评估深度学习重建技术在磁共振肠成像中的应用,比较其与传统方法在图像质量和采集时间上的差异 观察者间对深度学习重建图像质量的一致性较低,尤其是T1 VIBE图像 评估深度学习重建的磁共振肠成像图像质量及其在克罗恩病诊断中的临床效用 克罗恩病患者 digital pathology Crohn's disease magnetic resonance enterography deep learning image 93名患者用于T2 HASTE比较,42名患者用于T1 VIBE比较
872 2025-06-14
Model-informed deep-learning photoacoustic reconstruction for low-element linear array
2025-Aug, Photoacoustics IF:7.1Q1
research paper 提出了一种针对低元素线性阵列的模型信息深度学习光声重建方法,以解决传统重建方法在稀疏传感器排列和有限传感器间距下的图像质量问题 引入了轻量级的GE-CNN框架,显著降低了计算需求,模型矩阵大小减少了4倍,处理速度提高了约46.3% 未提及在实际临床环境中的广泛验证 提高光声断层扫描(PAT)在稀疏传感器排列下的图像重建质量和计算效率 线性阵列超声换能器 医学影像处理 NA 光声断层扫描(PAT) GE-CNN 图像 合成模型、实验体模和活体大鼠肝脏成像
873 2025-06-13
A systematic review of AI as a digital twin for prostate cancer care
2025-Aug, Computer methods and programs in biomedicine IF:4.9Q1
系统综述 本文系统综述了AI作为数字孪生在前列腺癌护理中的应用 结合AI技术(如机器学习和深度学习)的数字孪生技术,用于提升前列腺癌的预测准确性、早期诊断和个体化治疗策略 当前方法在实时数据整合、AI模型可解释性及临床验证方面存在不足 探讨AI驱动的数字孪生技术在前列腺癌诊断和治疗中的应用及未来研究方向 前列腺癌患者 数字病理学 前列腺癌 机器学习(ML)、深度学习(DL)、大型语言模型(LLMs)、视觉语言模型(VLMs) NA 多模态数据 NA
874 2025-06-13
Deep learning techniques for automated coronary artery segmentation and coronary artery disease detection: A systematic review of the last decade (2013-2024)
2025-Aug, Computer methods and programs in biomedicine IF:4.9Q1
系统综述 本文对过去十年(2013-2024)中用于冠状动脉自动分割(CAS)和冠状动脉疾病检测(CAD)的深度学习技术进行了系统性回顾 提供了关于深度学习在CAS和CAD检测中应用的最新系统性综述,并分析了模型、数据集和性能指标的最新趋势 公共数据集有限、性能指标存在变异性以及模型复杂性 回顾和总结过去十年中深度学习在冠状动脉自动分割和冠状动脉疾病检测中的应用 冠状动脉图像和冠状动脉疾病 医学影像分析 心血管疾病 深度学习 CNN, U-Net, 注意力机制, 图神经网络 医学影像(如CCTA、ECG) 97项高质量研究
875 2025-06-13
MSFusion: A multi-source hybrid feature fusion network for accurate grading of invasive breast cancer using H&E-stained histopathological images
2025-Aug, Medical image analysis IF:10.7Q1
研究论文 提出了一种名为MSFusion的多源混合特征融合网络,用于利用H&E染色组织病理学图像准确分级浸润性乳腺癌 结合了基于Swin Transformer的多分支网络MSwinT提取的深度学习特征和传统手工特征,通过KDC融合块整合多源核的特征,提高了乳腺癌分级的准确性 NA 提高浸润性乳腺癌分级的准确性以优化治疗方案和生存率 浸润性乳腺癌的H&E染色组织病理学图像 数字病理学 乳腺癌 深度学习与传统手工特征融合 Swin Transformer-based multi-branch network (MSwinT), KDC fusion block 图像 三个数据集(两个私有临床数据集Qilu和QDUH&SHSU,一个公开数据集Databiox)
876 2025-06-12
Artificial intelligence (AI)-driven morphological assessment of zebrafish larvae for developmental toxicity chemical screening
2025-Aug, Aquatic toxicology (Amsterdam, Netherlands)
研究论文 利用深度学习模型对斑马鱼幼虫进行形态学评估,以支持发育毒性化学物质筛选 开发了基于多视角卷积神经网络(MVCNN)的分类和分割模型,用于自动评估斑马鱼幼虫的形态变化,提高了评估的客观性和效率 模型性能在某些特定形态变化分类上仍有提升空间(F1分数低于0.70) 为毒理学评估中斑马鱼的常规使用提供科学依据,开发自动化评估工具 暴露于各种化学物质5天的斑马鱼胚胎 计算机视觉 NA 深度学习 MVCNN(多视角卷积神经网络) 图像 SEAZIT项目收集的斑马鱼胚胎图像数据(具体数量未说明)
877 2025-06-12
Scale-equivariant deep model-based optoacoustic image reconstruction
2025-Aug, Photoacoustics IF:7.1Q1
research paper 本文提出了一种尺度等变的基于模型的深度学习方法,用于多光谱光声断层扫描的图像重建 提出了一种尺度等变的基于模型的重建算子,能够根据输入正弦图的范数自动调整正则化强度,并促进了使用固定范数输入正弦图的监督深度学习 未提及具体的数据集或实验规模限制 优化多光谱光声断层扫描的图像重建质量 多光谱光声断层扫描的图像重建 digital pathology NA 多光谱光声断层扫描 scale-equivariant model-based reconstruction operator image NA
878 2025-06-11
Deep learning-enhanced hyperspectral imaging for rapid screening of Co-metabolic microplastic-degrading bacteria in environmental samples
2025-Aug-05, Journal of hazardous materials IF:12.2Q1
研究论文 本研究提出了一种结合深度学习的高光谱成像技术,用于快速筛选环境样本中共代谢微塑料降解细菌 首次将高光谱成像与深度学习算法结合,用于共代谢固体培养基中微塑料降解细菌的直接识别,显著提高了筛选效率 仅验证了一种PBAT降解细菌的筛选效果,需要更多种类细菌的验证 开发一种快速筛选共代谢微塑料降解细菌的方法 环境样本中的共代谢微塑料降解细菌 机器视觉 NA 高光谱成像(HSI) 深度学习 图像 未明确说明样本数量
879 2025-06-11
Diagnosis of thyroid cartilage invasion by laryngeal and hypopharyngeal cancers based on CT with deep learning
2025-Aug, European journal of radiology IF:3.2Q1
research paper 开发基于卷积神经网络(CNN)的模型,用于诊断喉癌和下咽癌在CT图像中对甲状腺软骨的侵犯,并评估模型的诊断性能 利用ResNet101进行迁移学习,构建新的CNN模型来分类甲状腺软骨侵犯状态,并与放射科医生的诊断性能进行比较 样本量较小(91例),且未提及模型在其他医疗机构或更大数据集上的泛化能力 提高喉癌和下咽癌在CT图像中对甲状腺软骨侵犯的诊断准确性 喉癌和下咽癌患者的CT图像 digital pathology laryngeal and hypopharyngeal cancers CT imaging CNN (ResNet101) image 91例(训练集61例,测试集30例)
880 2025-06-11
Improving image quality and diagnostic performance using deep learning image reconstruction in 100-kVp CT enterography for patients with wide-range body mass index
2025-Aug, European journal of radiology IF:3.2Q1
research paper 评估深度学习图像重建(DLIR)算法在100-kVp CT肠造影(CTE)中对不同BMI患者图像质量、诊断信心和肠道病变检测的临床价值 比较了DLIR与传统ASiR-V算法在图像质量、诊断信心和肠道病变检测方面的表现,发现DLIR-M在图像质量和诊断信心上表现更优,并可能提高初级读者对炎症性病变的检测敏感性 炎症性病变检测的敏感性提升未达到统计学显著性,需要进一步研究 评估DLIR算法在100-kVp CTE中的临床价值 84名接受100-kVp双期CTE检查的患者 数字病理 肠道疾病 CT enterography (CTE) DLIR (深度学习图像重建) image 84名患者
回到顶部