本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 961 | 2025-10-07 |
The impact of partner interaction on brief social buffering in adolescent female rats as analyzed by deep learning-based object detection algorithms
2025-Aug-01, Physiology & behavior
IF:2.4Q2
DOI:10.1016/j.physbeh.2025.114934
PMID:40311725
|
研究论文 | 本研究通过深度学习算法分析伴侣互动对青春期雌性大鼠短暂社会缓冲效应的影响 | 首次使用YOLOv8和BoT-SORT深度学习算法分析社会缓冲行为,减少人为偏见并获取人类难以观察的变量 | 仅使用青春期Sprague-Dawley大鼠,样本时间窗口较短(仅3分钟缓冲期) | 探究短暂社会接触是否能在恐惧条件反射后产生社会缓冲效应,以及伴侣互动对此效应的影响 | 青春期Sprague-Dawley大鼠(4-5周龄,雄性和雌性) | 计算机视觉 | NA | 深度学习行为分析 | 目标检测算法 | 视频行为数据 | 青春期Sprague-Dawley大鼠群体(具体数量未明确说明) | YOLOv8, BoT-SORT | YOLOv8, BoT-SORT | 行为相关性分析 | NA |
| 962 | 2025-10-07 |
Automatic and precise identification of volatile organic compounds from gas chromatography in prolonged atmospheric monitoring
2025-Aug-02, Journal of chromatography. A
DOI:10.1016/j.chroma.2025.466035
PMID:40373387
|
研究论文 | 提出基于人工智能的ResGRU模型,用于气相色谱中挥发性有机化合物的自动精确识别 | 开发ResGRU模型实现色谱峰自动识别,在保留时间定位精度上比传统方法提高2.76-38.19倍,并具有优异的异常色谱图适应能力 | NA | 开发自动化方法精确识别气相色谱中的挥发性有机化合物 | 挥发性有机化合物(VOCs)的气相色谱数据 | 机器学习 | NA | 气相色谱 | ResGRU(结合ResNet和GRU的混合模型) | 色谱数据 | 来自上海、湖北和江苏四个监测站点的数据 | NA | ResGRU(ResNet与GRU结合架构) | 平均绝对误差(保留时间定位) | NA |
| 963 | 2025-10-07 |
A subject transfer neural network fuses Generator and Euclidean alignment for EEG-based motor imagery classification
2025-Aug, Journal of neuroscience methods
IF:2.7Q3
DOI:10.1016/j.jneumeth.2025.110483
PMID:40350042
|
研究论文 | 提出一种结合生成器和欧几里得对齐的主题转移神经网络,用于基于EEG的运动想象分类 | 提出ST-GENN模型,通过欧几里得空间对齐和生成器实现跨被试的EEG信号迁移学习 | NA | 解决脑机接口中个体EEG信号差异问题,提高运动想象分类准确率 | 脑电图信号,运动想象任务 | 脑机接口 | NA | 脑电图 | 深度学习,迁移学习 | EEG信号 | BCI competition IV 2a、BCI competition IV 2b和SHU三个数据集 | NA | Generator, Convolution-attention-temporal分类器 | 准确率 | NA |
| 964 | 2025-10-07 |
A framework for real-time traffic risk prediction incorporating cost-sensitive learning and dynamic thresholds
2025-Aug, Accident; analysis and prevention
DOI:10.1016/j.aap.2025.108087
PMID:40328008
|
研究论文 | 提出一种融合成本敏感学习和动态阈值的实时交通风险预测框架 | 将交通风险细分为四个等级并引入误分类成本考量,结合动态阈值解决多分类任务性能下降问题 | NA | 提升实时交通风险预测的可靠性 | 车辆轨迹数据 | 机器学习 | NA | 车辆轨迹数据分析 | 机器学习/深度学习模型 | 轨迹数据 | HighD数据集 | NA | CSL-DTs集成模型 | 精确率, 计算时间 | 遗传算法优化 |
| 965 | 2025-10-07 |
Deep learning models link local cellular features with whole-animal growth dynamics in zebrafish
2025-Aug, Life science alliance
IF:3.3Q1
DOI:10.26508/lsa.202503319
PMID:40399066
|
研究论文 | 本研究使用深度学习模型通过斑马鱼皮肤细胞图像预测其整体生长尺寸 | 首次证明仅需少量细胞图像即可预测宏观生物体尺寸,建立了微观细胞特征与宏观生长状态的联系 | 研究仅针对斑马鱼幼虫,样本数量相对有限(722张图像) | 探索微观细胞特征与宏观动物生长状态之间的关联性 | 斑马鱼幼虫的皮肤细胞 | 计算机视觉 | NA | 显微成像 | Vision Transformer (ViT) | 图像 | 722张皮肤细胞图像及对应的斑马鱼尺寸数据 | NA | Vision Transformer | F-score | NA |
| 966 | 2025-10-07 |
Label-free rapid diagnosis of jaw osteonecrosis via the intersection of Raman spectroscopy and deep learning
2025-Aug, Bone
IF:3.5Q2
DOI:10.1016/j.bone.2025.117510
PMID:40320103
|
研究论文 | 本研究结合拉曼光谱和深度学习技术,建立了一种无标记快速诊断颌骨坏死的方法 | 首次将拉曼光谱与ResNet18深度学习架构结合用于颌骨坏死的快速无创诊断 | 样本量相对有限(90个骨组织样本),需要更大规模验证 | 建立精确高效的诊断框架以区分药物相关性颌骨坏死、放射性颌骨坏死和正常骨组织 | 90个骨组织样本(30个MRONJ、30个ORN、30个对照) | 医学影像分析 | 颌骨坏死 | 拉曼光谱 | CNN | 光谱数据 | 90个骨组织样本,共900个光谱 | NA | ResNet18 | 准确率,精确率,召回率,AUC | NA |
| 967 | 2025-10-07 |
A high-throughput framework for predicting three-dimensional structural-mechanical relationships of human cranial bones using a deep learning-based method
2025-Aug, Journal of the mechanical behavior of biomedical materials
IF:3.3Q3
DOI:10.1016/j.jmbbm.2025.107007
PMID:40328110
|
研究论文 | 提出基于深度学习的高通量框架,用于预测人类颅骨三维结构与力学响应之间的关系 | 首次将三维颅骨微观结构与三维力学响应相关联,克服了传统方法仅能预测一维序列或二维截面力学属性的局限性 | 样本数量有限(40个颅骨样本),年龄分布较集中(平均82.5岁) | 建立颅骨三维微观结构与力学响应之间的关联关系 | 人类颅骨样本 | 医学影像分析 | 颅骨损伤 | micro-CT扫描,有限元模拟,准静态压缩实验 | 深度学习 | 三维医学影像 | 40个人类颅骨样本,从中提取2000个代表性体积单元 | NA | 优化后的U-Net | 预测值与真实值之间的相似度 | NA |
| 968 | 2025-05-15 |
Fingerprinting of Boletus bainiugan: FT-NIR spectroscopy combined with machine learning a new workflow for storage period identification
2025-Aug, Food microbiology
IF:4.5Q1
DOI:10.1016/j.fm.2025.104743
PMID:40086983
|
研究论文 | 本研究通过FT-NIR光谱结合机器学习方法,开发了一种用于鉴定牛肝菌储存期的新工作流程 | 结合FT-NIR光谱与机器学习(特别是CNN和BPNN模型)来鉴定牛肝菌的储存时间,并首次应用DD-SIMCA模型完全区分新旧样品 | 研究仅分析了储存0、1和2年的样品,未涵盖更长的储存期 | 开发一种低成本、用户友好的方法,实时确定供应链中牛肝菌的储存期 | 牛肝菌(Boletus bainiugan) | 机器学习 | NA | 高效液相色谱(HPLC)、傅里叶变换近红外光谱(FT-NIR) | CNN、BPNN、DD-SIMCA、PLSR | 光谱数据 | 831份牛肝菌样品(储存0、1和2年) | NA | NA | NA | NA |
| 969 | 2025-10-07 |
A comprehensive review of computational methods for Protein-DNA binding site prediction
2025-Aug, Analytical biochemistry
IF:2.6Q2
DOI:10.1016/j.ab.2025.115862
PMID:40209920
|
综述 | 本文全面回顾并分类了蛋白质-DNA结合位点预测的主要计算方法,并对14种先进模型进行了基准测试 | 系统比较了基于模板检测、统计机器学习和深度学习的DNA结合位点预测方法,发现基于预训练大语言模型的深度学习方法性能最优 | NA | 开发高效准确的DNA结合位点预测计算方法 | 蛋白质-DNA结合位点 | 生物信息学 | NA | 计算方法 | 深度学习, 统计机器学习, 模板检测 | 蛋白质序列/结构数据 | 136个非冗余蛋白质 | NA | 预训练大语言模型 | NA | NA |
| 970 | 2025-05-12 |
Stacked long and short-term memory (SLSTM) - assisted terahertz spectroscopy combined with permutation importance for rapid red wine varietal identification
2025-Aug-15, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127650
PMID:40037161
|
research paper | 该研究利用太赫兹时域光谱结合深度学习技术,快速无损地区分不同品种的红酒,以正确识别红酒标签 | 采用堆叠长短时记忆(SLSTM)模型结合排列重要性进行特征选择,提高了红酒品种识别的准确性和效率 | 基于排列重要性的1-st der-SLSTM模型在精度上略低于全频率模型,预测时间减少了2秒 | 开发一种快速、准确且无损的红酒品种鉴别技术,以维护市场秩序和消费者权益 | 不同品种的红酒 | machine learning | NA | 太赫兹时域光谱(THz-TDS) | SLSTM | 光谱数据 | NA | NA | NA | NA | NA |
| 971 | 2025-05-12 |
Intelligent characterization multi-components in Yangxinshi tablet by online comprehensive two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry combined with deep learning-assisted mass defect filtering classification and multidimensional data annotation strategy
2025-Aug-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127821
PMID:40020613
|
研究论文 | 建立了一种用于养心氏片中多种化学成分智能分析的全面表征策略 | 开发了深度学习辅助质量缺陷过滤智能分类、优选离子捕获列表和主动排除(DLA-MDF-PIL-AE)数据采集模式 | 未明确提及具体限制 | 开发一种用于复杂天然产物中多种成分表征的集成策略 | 养心氏片中的化学成分 | 质谱分析与深度学习 | NA | 在线综合二维液相色谱-四极杆飞行时间质谱(2DLC-Q-TOF-MS/MS) | 深度学习 | 质谱数据 | 228种化合物(包括80种黄酮类、52种生物碱、36种酚酸、15种萜类、17种皂苷和28种其他化合物) | NA | NA | NA | NA |
| 972 | 2025-05-08 |
Aflatoxin detection in naturally contaminated peanuts based on vision transformer and multi-scale convolutional fusion
2025-Aug-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144300
PMID:40220445
|
research paper | 提出了一种结合Vision Transformer和多尺度卷积融合的改进1D-MCFViT模型,用于自然条件下花生中黄曲霉毒素的检测 | 结合Vision Transformer和多尺度卷积融合,使用自编码器网络和高斯重采样技术增强模型特征判别能力 | 未提及具体样本量或实验条件的局限性 | 提高自然条件下花生中黄曲霉毒素的检测准确率 | 自然污染的花生 | computer vision | NA | autoencoder network, Gaussian resampling | 1D-MCFViT, Vision Transformer, CNN | RGB图像, 光谱曲线 | NA | NA | NA | NA | NA |
| 973 | 2025-05-03 |
Robust DEEP heterogeneous ensemble and META-learning for honey authentication
2025-Aug-01, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144001
PMID:40184746
|
研究论文 | 本研究提出了一种结合多种分析技术和深度学习模型的新框架,用于区分纯蜂蜜与掺假蜂蜜 | 通过元学习整合多种分析技术和深度学习模型,扩展了输入特征空间,提高了预测性能 | 未提及具体的数据来源和样本采集细节 | 解决蜂蜜掺假问题,保障消费者健康和经济诚信 | 纯蜂蜜与掺假蜂蜜(蔗糖糖浆、葡萄糖浆或焦糖味冰淇淋配料) | 分析化学 | NA | 多种分析技术 | CNN, 元学习 | NA | NA | NA | NA | NA | NA |
| 974 | 2025-04-24 |
Intelligent Recognition of Goji Berry Pests Using CNN With Multi-Graphic-Occlusion Data Augmentation and Multiple Attention Fusion Mechanisms
2025-Aug, Archives of insect biochemistry and physiology
IF:1.5Q4
DOI:10.1002/arch.70060
PMID:40262026
|
研究论文 | 本文提出了一种改进的卷积神经网络(CNN)GojiNet,用于准确识别17种枸杞害虫 | 结合多图遮挡数据增强方法和多注意力融合机制,构建了GojiNet模型,提高了害虫识别的准确率 | 模型训练时间略有增加,且未提及在不同光照或环境条件下的泛化能力 | 解决枸杞害虫识别中传统人工检测方法的主观性、耗时和劳动密集型问题 | 17种枸杞害虫 | 计算机视觉 | NA | 多图遮挡数据增强方法 | CNN(GojiNet,基于ResNet18改进) | 图像 | 未明确提及具体样本数量,但涉及17种害虫的数据集 | NA | NA | NA | NA |
| 975 | 2025-04-23 |
Transcranial adaptive aberration correction using deep learning for phased-array ultrasound therapy
2025-Aug, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107641
PMID:40117699
|
研究论文 | 本研究探讨了使用深度学习方法校正颅骨引起的畸变,开发了一种用于安全超声治疗血脑屏障(BBB)开放的经颅自适应聚焦方法 | 提出了一种结合预分割、k-Wave模拟和基于3D U-net网络的方法,用于快速准确地预测相位校正,显著降低了计算成本和时间 | 研究仅基于模拟环境和小块颅骨样本,尚未在真实临床环境中验证 | 开发一种快速、精确且自适应的经颅畸变校正方法,用于通过超声治疗脑部疾病 | 256元相控阵、小块颅骨和水构成的非线性模拟环境 | 医学影像处理 | 脑部疾病 | k-Wave模拟、3D U-net网络 | 3D U-net | 模拟数据 | NA | NA | NA | NA | NA |
| 976 | 2025-10-07 |
DTF-diffusion: A 3D equivariant diffusion generation model based on ligand-target information fusion
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出了一种基于配体-靶点信息融合的三维等变扩散生成模型DTF-diffusion,用于生成与特定靶蛋白结合的合理药物分子 | 首次将配体与靶点的三维位置特征信息进行融合,并设计了化学规则判别模块来提升生成分子结构的合理性 | NA | 开发能够生成与特定靶蛋白结合且结构合理的药物分子的深度学习模型 | 药物分子和靶蛋白 | 机器学习 | NA | 扩散模型 | 扩散生成模型 | 三维分子结构数据 | 基于CrossDocket2020数据集 | NA | DTF-diffusion | 药物相似性指数,药物有效性指数 | NA |
| 977 | 2025-10-07 |
Brain tumor segmentation and classification using MRI: Modified segnet model and hybrid deep learning architecture with improved texture features
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出一种基于MRI的脑肿瘤自动分割与分类方法,采用改进的Segnet模型和混合深度学习架构 | 提出改进的Segnet模型采用新池化操作,并开发结合Bi-LSTM和改进Linknet的混合深度学习架构,融合多种改进的纹理特征 | NA | 开发自动化的脑肿瘤分割与分类系统以提高诊断效率和准确性 | 脑肿瘤MRI图像 | 计算机视觉 | 脑肿瘤 | 磁共振成像(MRI) | CNN, Bi-LSTM | 医学图像(MRI) | NA | NA | Modified Segnet, Bi-LSTM, Modified Linknet | 准确率 | NA |
| 978 | 2025-04-22 |
PocketDTA: A pocket-based multimodal deep learning model for drug-target affinity prediction
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出了一种基于口袋的多模态深度学习模型PocketDTA,用于药物-靶标亲和力预测 | 引入了口袋图结构,编码蛋白质残基特征作为节点,边代表不同的蛋白质序列和空间距离,克服了传统模型仅依赖蛋白质序列输入缺乏空间信息的限制 | 未明确提及具体局限性 | 提高药物-靶标亲和力预测的准确性和泛化能力 | 药物和蛋白质 | 机器学习 | NA | 深度学习 | 关系图卷积网络(Relational Graph Convolutional Networks) | 序列数据和结构数据 | 多个基准数据集(具体数量未提及) | NA | NA | NA | NA |
| 979 | 2025-04-22 |
Multiple omics-based machine learning reveals specific macrophage sub-clusters in renal ischemia-reperfusion injury and constructs predictive models for transplant outcomes
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本研究通过多组学机器学习方法揭示了肾缺血再灌注损伤中特定的巨噬细胞亚群,并构建了移植结果的预测模型 | 创新性地将基因表达矩阵转化为独特的图形像素模块,并应用先进的计算机视觉处理算法构建DGF预测模型,同时使用10种机器学习算法的111种组合开发移植物存活的预测特征 | 研究主要基于GEO数据库的scRNA-Seq数据,可能需要更多独立队列验证模型的普适性 | 分析巨噬细胞在IRI中的发育和分化特征,识别IRI的特定分子亚型,并建立DGF和移植物存活的预测策略 | 肾缺血再灌注损伤中的巨噬细胞亚群和移植受者 | 数字病理 | 肾脏疾病 | scRNA-Seq, bulk RNA-Seq, qRT-PCR, WB, IHC | 深度学习算法, 随机生存森林算法 | 基因表达数据, 图像数据 | GEO数据库中的scRNA-Seq数据和小鼠IRI模型 | NA | NA | NA | NA |
| 980 | 2025-04-22 |
On construction of data preprocessing for real-life SoyLeaf dataset & disease identification using Deep Learning Models
2025-Aug, Computational biology and chemistry
IF:2.6Q2
|
research paper | 该论文构建了一个真实的大豆叶片数据集SoyLeaf,并应用深度学习模型进行叶片病害识别 | 开发了包含9786张高质量大豆叶片图像的真实数据集SoyLeaf,并比较了多种预训练深度学习模型在该数据集上的表现 | 未提及模型在实际田间环境中的泛化能力测试 | 解决大豆叶片病害识别中高质量样本不足的问题 | 大豆叶片(健康与病害叶片) | computer vision | soybean leaf diseases | transfer learning | ResNet50V2, ResNet101V2, ResNet152V2, InceptionV3, InceptionResNetV2, MobileNet, MobileNetV2, DenseNet121, DenseNet169 | image | 9786张大豆叶片图像 | NA | NA | NA | NA |