本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101 | 2025-07-11 |
Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11173-y
PMID:40153158
|
综述 | 本文综述了抗病毒肽(AVPs)的数据库构建、理化特性及其在机器学习预测工具中的应用 | 探讨了AI技术在抗病毒肽发现中的关键作用,并介绍了专用数据库(如DRAVP、AVPdb和DBAASP)的开发与应用 | 现有数据库存在数据集小、注释不完整以及与多组学数据整合不足的问题,且预测工具面临过拟合、实验验证有限和缺乏机制性见解的挑战 | 推动抗病毒肽和拟肽类药物的发现与开发 | 抗病毒肽(AVPs)及其理化特性 | 自然语言处理 | NA | 机器学习和深度学习 | NA | 文本数据 | NA |
102 | 2025-07-11 |
Integrating deep learning and molecular dynamics simulations for FXR antagonist discovery
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11145-2
PMID:40172823
|
研究论文 | 本研究结合深度学习和分子动力学模拟,发现FXR拮抗剂用于治疗代谢疾病 | 开发了预测FXR拮抗活性和毒性的深度学习模型,并通过分子动力学模拟筛选出具有潜在治疗价值的化合物 | 研究中筛选的化合物数量有限,且未进行临床验证 | 发现可用于治疗代谢疾病的FXR拮抗剂 | FXR(法尼醇X受体)及其潜在拮抗剂 | 机器学习 | 代谢疾病 | 深度学习,分子动力学模拟 | 深度学习模型 | 化合物数据 | 从HMDB数据库中筛选的217,345种化合物 |
103 | 2025-07-11 |
QMGBP-DL: a deep learning and machine learning approach for quantum molecular graph band-gap prediction
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11178-7
PMID:40252145
|
研究论文 | 本文提出了一种结合深度学习和机器学习的量子分子图带隙预测方法QMGBP-DL | QMGBP-DL方法通过结合分子图编码器和机器学习模型,显著提高了分子和材料带隙能量的预测准确性 | 未提及具体局限性 | 加速药物设计和材料科学中的发现,特别是分子和量子材料性质的预测 | 分子和量子材料的带隙能量 | 机器学习 | NA | 图卷积网络(GCN)和随机森林 | GCN, Random Forest | 分子图数据(SMILES字符串) | QM9, PCQM4M和OPV数据集 |
104 | 2025-07-11 |
Cangrelor and AVN-944 as repurposable candidate drugs for hMPV: analysis entailed by AI-driven in silico approach
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11206-6
PMID:40316857
|
研究论文 | 本研究通过AI驱动的计算机模拟方法,筛选出Cangrelor和AVN-944作为抗人类偏肺病毒(hMPV)的候选药物 | 利用深度学习构建药效团模型筛选FDA批准药物和抗病毒药物,并通过分子对接和分子动力学模拟验证药物与hMPV F蛋白的结合稳定性 | 需要进一步的体外和体内实验验证候选药物的疗效 | 寻找可重新用于治疗hMPV感染的药物 | 人类偏肺病毒(hMPV)的F蛋白 | 计算生物学 | 呼吸道感染 | 深度学习、分子对接、分子动力学模拟 | 深度学习药效团模型 | 蛋白质结构数据、药物分子数据 | 初始筛选2400种FDA批准药物和255种抗病毒药物,最终筛选出792种和72种候选药物 |
105 | 2025-07-11 |
Machine learning approaches for predicting the small molecule-miRNA associations: a comprehensive review
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11211-9
PMID:40392452
|
综述 | 本文全面回顾了机器学习在预测小分子与microRNA关联中的应用 | 对32种基于机器学习的SMA预测方法进行了详尽分类和趋势分析,提供了未来研究的宝贵见解 | 未提及具体方法在临床转化中的实际应用限制 | 增强对小分子-miRNA相互作用的理解和预测能力 | 小分子(SMs)与microRNA(miRNAs)的关联关系 | 机器学习 | NA | 机器学习算法 | 经典ML、深度学习、矩阵分解、网络传播、图学习、集成学习 | 生物分子相互作用数据 | NA |
106 | 2025-07-11 |
Brain age prediction from MRI scans in neurodegenerative diseases
2025-Aug-01, Current opinion in neurology
IF:4.1Q2
DOI:10.1097/WCO.0000000000001383
PMID:40396549
|
综述 | 本文综述了利用MRI扫描进行脑龄估计作为脑健康生物标志物的应用 | 探讨了脑龄估计在神经退行性疾病早期诊断、疾病监测和个性化医疗中的潜在应用 | 标准化实施、人口统计学偏差和可解释性等挑战仍然存在 | 探索脑龄估计作为神经退行性疾病早期检测工具的潜力 | 阿尔茨海默病、轻度认知障碍(MCI)和帕金森病患者 | 数字病理学 | 神经退行性疾病 | MRI扫描、深度学习 | 深度学习模型 | MRI图像 | NA |
107 | 2025-07-11 |
Discovery of novel potential 11β-HSD1 inhibitors through combining deep learning, molecular modeling, and bio-evaluation
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11171-0
PMID:40397334
|
研究论文 | 本研究通过结合深度学习、分子建模和生物评估,发现了新型潜在的11β-HSD1抑制剂 | 使用基于GRU的循环神经网络构建分子生成模型,结合转移学习生成潜在的11β-HSD1抑制剂 | 化合物02的抑制活性不如对照药物 | 开发新型11β-HSD1抑制剂 | 11β-HSD1抑制剂 | 机器学习 | 糖尿病、胰岛素抵抗、血脂异常和肥胖 | 深度学习、分子对接、分子动力学模拟 | GRU | 分子数据 | 1,854,484个药物样分子 |
108 | 2025-07-11 |
Drug repurposing to identify potential FDA-approved drugs targeting three main angiogenesis receptors through a deep learning framework
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-025-11214-6
PMID:40418485
|
研究论文 | 本研究利用深度学习框架,从FDA批准的药物中识别出针对VEGFR、FGFR和EGFR三种主要血管生成受体的多靶点抑制剂 | 采用新颖的集成方法,结合分类和回归模型,同时考虑三种靶受体,以提高药物开发的成功率并减少耐药性 | 研究仅基于计算机模拟筛选,未进行实验验证 | 开发一种方法学,用于发现FDA批准药物中的多靶点抑制剂,以控制血管生成 | 2000多种FDA批准的药物 | 机器学习 | 癌症 | 深度学习 | 深度自编码器分类模型和回归模型 | 药物分子数据 | 2000多种FDA批准的药物 |
109 | 2025-07-11 |
Integrated machine learning-based virtual screening and biological evaluation for identification of potential inhibitors against cathepsin K
2025-Aug, Molecular diversity
IF:3.9Q2
DOI:10.1007/s11030-024-10845-5
PMID:38662177
|
研究论文 | 本研究通过机器学习和深度学习虚拟筛选结合生物评估,识别出潜在的Cathepsin K抑制剂 | 结合机器学习和深度学习进行虚拟筛选,并进行了生物评估,鉴定出五种具有潜在抑制Cathepsin K活性的化合物 | 研究仅筛选了十种化合物,样本量较小 | 识别潜在的Cathepsin K抑制剂以治疗骨质疏松症 | Cathepsin K及其潜在抑制剂 | 机器学习 | 骨质疏松症 | 虚拟筛选、分子对接、MD模拟、MM/PBSA分析 | 机器学习和深度学习模型 | 化学化合物数据 | 十种短名单化合物,其中五种表现出超过50%的抑制效果 |
110 | 2025-07-10 |
Insights from the eyes: a systematic review and meta-analysis of the intersection between eye-tracking and artificial intelligence in dementia
2025-Aug, Aging & mental health
IF:2.8Q2
DOI:10.1080/13607863.2025.2464704
PMID:39950960
|
系统综述与荟萃分析 | 本文通过系统综述和荟萃分析探讨了眼动追踪技术与人工智能在痴呆症检测中的交叉应用 | 首次对眼动追踪与AI结合用于痴呆症检测的研究进行系统综述和荟萃分析,提供了性能指标的汇总结果 | 纳入研究数量有限(9项),样本量较小(57-583人),且主要关注阿尔茨海默病,缺乏其他痴呆类型的代表性 | 评估眼动追踪与人工智能结合在痴呆症检测中的效果 | 痴呆症患者(主要为阿尔茨海默病患者) | 数字病理学 | 老年性疾病 | 眼动追踪技术 | 机器学习模型(6项)和深度学习模型(3项) | 眼动数据 | 9项研究,共涉及57-583名参与者 |
111 | 2025-07-10 |
Automated Von Willebrand Factor Multimer Image Analysis for Improved Diagnosis and Classification of Von Willebrand Disease
2025-Aug, International journal of laboratory hematology
IF:2.2Q3
DOI:10.1111/ijlh.14455
PMID:40025642
|
研究论文 | 开发了一种基于深度学习的自动化图像分析流程,用于改进冯·维勒布兰德因子多聚体图像的分析,以提升冯·维勒布兰德病的诊断和分类 | 利用YOLOv8深度学习模型自动分类VWF多聚体模式,提高了分类的再现性和效率 | 模型在罕见亚型上的表现较低 | 改进冯·维勒布兰德病的诊断和分类 | 冯·维勒布兰德因子多聚体图像 | 数字病理学 | 冯·维勒布兰德病 | 深度学习 | YOLOv8 | 图像 | 514张凝胶图像(6168个标记实例)用于训练,192张图像(2304个实例)用于验证,94张图像(1128个实例)用于测试 |
112 | 2025-07-10 |
Three-Dimensional Visualisation of Blood Vessels in Human Gliomas Using Tissue Clearing and Deep Learning
2025-Aug, Neuropathology and applied neurobiology
IF:4.0Q1
DOI:10.1111/nan.70027
PMID:40628519
|
研究论文 | 本研究结合组织透明化、3D共聚焦显微镜成像和深度学习辅助的血管提取技术,实现了人脑胶质瘤血管系统的全面3D可视化 | 创新性地结合组织透明化技术与深度学习算法,实现了胶质瘤血管系统的3D可视化,并揭示了不同级别胶质瘤血管形态的差异 | 研究仅使用了福尔马林固定的厚组织切片,可能无法完全代表活体组织的真实情况 | 开发一种能够全面可视化人脑胶质瘤血管系统的方法,并研究不同级别胶质瘤的血管形态差异 | 人脑胶质瘤组织样本 | 数字病理学 | 胶质瘤 | 组织透明化(OPTIClear)、3D共聚焦显微镜成像、免疫荧光标记 | 3D U-Net | 3D图像 | 未明确说明具体样本数量的人脑胶质瘤厚组织切片(500μm) |
113 | 2025-07-09 |
Artificial intelligence models for predicting acute kidney injury in the intensive care unit: a systematic review of modeling methods, data utilization, and clinical applicability
2025-Aug, JAMIA open
IF:2.5Q3
DOI:10.1093/jamiaopen/ooaf065
PMID:40620479
|
系统综述 | 本文系统综述了ICU中急性肾损伤(AKI)预测的人工智能模型,评估了建模方法、数据利用策略及临床适用性,并提出了未来研究方向 | 全面评估了AKI预测模型的建模方法、数据利用和临床适用性,并识别了当前挑战及未来研究方向 | 大多数研究存在高偏倚风险,特别是在泛化性和临床适用性方面,且缺乏外部验证和动态建模 | 评估ICU中AKI预测的人工智能模型,并探讨其临床适用性 | ICU患者中的急性肾损伤(AKI) | 机器学习 | 急性肾损伤 | 机器学习、深度学习、动态预测框架 | 多种(包括机器学习和深度学习模型) | ICU特定数据 | 47项符合纳入标准的研究(从1305项筛选研究中) |
114 | 2025-07-08 |
An Explainable Connectome Convolutional Transformer for Multimodal Autism Spectrum Disorder Classification
2025-Aug, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500431
PMID:40621646
|
研究论文 | 提出了一种可解释的连接组卷积变换器(CCTF),用于多模态自闭症谱系障碍(ASD)分类 | CCTF整合了功能性和结构性脑连接信息,采用连接组卷积嵌入模块和变换器编码器,提高了分类准确性和可解释性 | 多站点数据集成可能引入变异性,影响结果的准确性 | 开发一种自动化神经影像诊断工具,用于ASD分类 | 自闭症谱系障碍(ASD)患者 | 数字病理学 | 自闭症谱系障碍 | fMRI和sMRI | Connectome Convolutional Transformer (CCTF) | 神经影像数据 | 多站点ABIDE数据集 |
115 | 2025-07-07 |
Ultra-low-dose coronary CT angiography via super-resolution deep learning reconstruction: impact on image quality, coronary plaque, and stenosis analysis
2025-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11399-2
PMID:39891682
|
research paper | 本研究探讨了超分辨率深度学习重建(SR-DLR)在降低冠状动脉CT血管造影(CCTA)辐射剂量中的应用及其对图像质量、冠状动脉斑块和狭窄分析的影响 | 首次将超分辨率深度学习重建(SR-DLR)应用于超低剂量CCTA,实现了60%的辐射剂量降低,同时保持了图像质量和临床分析的准确性 | 样本量较小(仅50名患者),且未评估SR-DLR在更广泛临床场景中的适用性 | 评估SR-DLR在降低CCTA辐射剂量中的效果及其对图像质量和临床分析的影响 | 50名接受低剂量和超低剂量CCTA扫描的患者 | digital pathology | cardiovascular disease | coronary CT angiography (CCTA), super-resolution deep learning reconstruction (SR-DLR) | deep learning | medical imaging | 50名患者,48个冠状动脉节段 |
116 | 2025-07-07 |
Normative values for lung, bronchial sizes, and bronchus-artery ratios in chest CT scans: from infancy into young adulthood
2025-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11367-w
PMID:39891681
|
research paper | 该研究通过胸部CT扫描,评估了从学龄前到青年期支气管和动脉尺寸的发育趋势,并提供了相关参数的规范值 | 利用自动化深度学习算法计算支气管和动脉参数,首次提供了从婴儿期到青年期的支气管-动脉比率规范值 | 研究样本仅包括375例正常吸气胸部CT扫描,可能不足以代表所有年龄段 | 评估胸部CT定量参数的发育趋势并提供规范值 | 0至24岁参与者的胸部CT扫描数据 | digital pathology | NA | CT扫描 | deep learning-based algorithm | image | 375例正常吸气胸部CT扫描(女性156例,男性219例) |
117 | 2025-07-07 |
Deep learning-based breast cancer diagnosis in breast MRI: systematic review and meta-analysis
2025-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11406-6
PMID:39907762
|
meta-analysis | 本文通过系统综述和荟萃分析评估了深度学习模型在乳腺MRI中诊断乳腺癌的性能 | 首次对深度学习模型在乳腺MRI诊断乳腺癌中的性能进行了系统综述和荟萃分析,提供了AUC、敏感性和特异性的汇总估计值 | 分析中存在显著的固有变异性,且仅有21项研究符合定量分析条件 | 评估深度学习模型在乳腺MRI中诊断乳腺癌的性能 | 乳腺癌诊断 | digital pathology | breast cancer | MRI | CNN, HCM | image | 40项研究(其中21项符合定量分析条件) |
118 | 2025-07-07 |
PlaqueViT: a vision transformer model for fully automatic vessel and plaque segmentation in coronary computed tomography angiography
2025-Aug, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11410-w
PMID:39909898
|
research paper | 开发并评估了一种用于冠状动脉血管和斑块分割的深度学习模型PlaqueViT | 提出了一种基于3D vision transformer的深度学习模型,用于全自动冠状动脉斑块分割,性能与专家相当 | NA | 开发用于冠状动脉CT血管成像中血管和斑块分割的深度学习模型 | 冠状动脉CT血管成像数据 | digital pathology | cardiovascular disease | coronary computed tomography angiography (CCTA) | 3D vision transformer | image | SCAPIS数据集(开发集463例,测试集123例,观察者间研究65例,CAD检测数据集684例),林雪平大学医院数据集(外部验证28例) |
119 | 2025-07-06 |
Automated material flow characterization of WEEE in sorting plants using deep learning and regression models on RGB data
2025-Aug-01, Waste management (New York, N.Y.)
DOI:10.1016/j.wasman.2025.114904
PMID:40424857
|
研究论文 | 本研究开发了一种基于RGB摄像头和深度学习的自动化方法,用于电子废弃物(WEEE)分选厂中的物料流成分分析 | 结合深度学习进行材料类型识别、回归模型预测单个颗粒质量,并将质量汇总为物料流成分 | 方法尚未在粉碎后的WEEE中成功应用 | 优化电子废弃物回收过程中的自动化粉碎和分离工艺 | 电子废弃物(WEEE)中的铁金属、非铁金属、印刷电路板和塑料 | 计算机视觉 | NA | RGB摄像头数据采集 | YOLO v11, K-nearest neighbors回归 | RGB图像 | NA |
120 | 2025-07-06 |
Pollen morphology, deep learning, phylogenetics, and the evolution of environmental adaptations in Podocarpus
2025-Aug, The New phytologist
DOI:10.1111/nph.70250
PMID:40458972
|
研究论文 | 本研究利用深度学习和系统发育框架分析了Podocarpus花粉形态与环境因素的关系,探讨了温度、降水、海拔和太阳辐射对形态变化的影响 | 首次将深度学习量化特征与系统发育分析结合,揭示了环境适应在花粉形态进化中的作用 | 研究仅针对31个新热带区Podocarpidites化石样本,样本代表性可能有限 | 探究环境因素对Podocarpus花粉形态进化的影响 | Podocarpus花粉形态特征 | 植物进化生物学 | NA | 深度学习, 系统发育分析 | 深度学习模型(未指定具体类型), 性状-环境回归模型 | 花粉形态图像数据, 环境参数数据 | 31个新热带区Podocarpidites化石样本 |