本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2025-05-31 |
TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment
2025-Sep, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.12.5.051805
PMID:40444137
|
研究论文 | 提出了一种基于深度学习的无参考CT图像质量评估方法TFKT,通过从自然图像数据集中迁移知识来减少对大型标注数据集的依赖 | 采用任务聚焦知识迁移方法,结合CNN-Transformer混合模型,从自然图像失真中学习并适应CT图像质量评估 | 需要预训练和微调过程,可能对特定任务的适应性有一定限制 | 开发一种无参考、自动化的CT图像质量评估方法,以反映放射科医生的评估 | CT图像的质量评估 | 计算机视觉 | NA | 深度学习 | CNN-Transformer混合模型 | 图像 | 约30张CT图像切片/秒的评估能力 |
2 | 2025-05-30 |
Deep learning algorithms to assist in imaging diagnosis in individuals with disc herniation or spondylolisthesis: A scoping review
2025-Sep, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105933
PMID:40252304
|
综述 | 本文综述了深度学习算法在椎间盘突出和脊椎滑脱影像诊断中的应用 | 总结了深度学习在脊柱疾病影像诊断中的最新进展,特别是针对椎间盘突出和脊椎滑脱的应用 | 数据集规模较小,缺乏外部验证,研究结果在不同人群中的普适性存在挑战 | 回顾深度学习算法在椎间盘突出和脊椎滑脱影像诊断中的应用 | 椎间盘突出和脊椎滑脱患者的影像数据 | 医学影像分析 | 脊椎疾病 | 深度学习 | CNN, ResNet | MRI, X-ray影像 | 18项符合条件的研究(9项针对椎间盘突出,9项针对脊椎滑脱) |
3 | 2025-05-28 |
Detecting the authenticity of two monofloral honeys based on the Canny-GoogLeNet deep learning network combined with three-dimensional fluorescence spectroscopy
2025-Sep-01, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144509
PMID:40306056
|
research paper | 该研究基于Canny-GoogLeNet深度学习网络结合三维荧光光谱技术,检测两种单花蜜(油菜蜜和枸杞蜜)及其掺假样品的真实性 | 通过优化GoogLeNet架构中的inception模块、应用L2正则化改进全连接层,并实施监控训练网络模型以减少过拟合,提升了模型鲁棒性 | 样本量较小(训练集133个,验证集33个,测试集12个),可能影响模型的泛化能力 | 开发一种高效准确的蜂蜜真实性检测方法 | 油菜蜜、枸杞蜜及其掺假样品(玉米糖浆或其他类型蜂蜜) | computer vision | NA | 三维荧光光谱技术 | Canny-GoogLeNet(改进的CNN架构) | 光谱图像数据 | 总计178个样本(训练133,验证33,测试12) |
4 | 2025-05-27 |
Deep learning-assisted 10-μL single droplet-based viscometry for human aqueous humor
2025-Sep-15, Biosensors & bioelectronics
IF:10.7Q1
DOI:10.1016/j.bios.2025.117530
PMID:40359807
|
research paper | 开发了一种基于深度学习的微流控粘度测量方法,用于测量人类房水的粘度 | 首次实现了对10微升人类房水粘度的测量,并观察到个体间约30%的差异 | NA | 优化青光眼治疗中的微管分流设计 | 人类房水 | 生物医学技术 | 青光眼 | 微流控技术 | 深度学习 | 视频或图像 | 10微升的人类房水样本 |
5 | 2025-05-27 |
Multi-modal multi-task deep neural networks for sleep disordered breathing assessment using cardiac and audio signals
2025-Sep, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105932
PMID:40286704
|
研究论文 | 本文介绍了一种使用心脏和音频信号进行睡眠呼吸障碍评估的多模态多任务深度学习方法 | 结合心脏和音频信号,利用多模态数据融合提升睡眠呼吸障碍检测性能 | 样本量较小(161名受试者),且SDB严重程度分类的准确率有待提高(57.8%) | 开发一种成本效益高且易于获取的睡眠呼吸障碍检测方法 | 睡眠呼吸障碍(SDB)患者 | 机器学习 | 睡眠呼吸障碍 | 多模态多任务深度学习 | 深度神经网络 | 心脏信号(心电图)和音频信号 | 161名受试者的夜间记录 |
6 | 2025-05-27 |
Using longitudinal data and deep learning models to enhance resource allocation in home-based medical care
2025-Sep, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.105953
PMID:40300486
|
研究论文 | 本研究利用纵向数据和深度学习模型优化家庭医疗资源分配 | 首次比较了Transformer、LSTM和GRU三种深度学习模型在家庭医疗阶段预测中的表现,并确定了5次就诊数据即可实现准确预测 | 研究数据仅来自台北市立医院,可能影响模型的泛化能力 | 通过AI预测家庭医疗阶段以优化医疗资源分配 | 家庭医疗患者 | 机器学习 | 老年疾病 | 深度学习 | Transformer, LSTM, GRU | 医疗记录 | 4,343名平均年龄85岁的患者 |
7 | 2025-04-24 |
Comprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainability
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127845
PMID:40081250
|
研究论文 | 结合拉曼光谱和深度学习技术对四种有毒蓝藻进行分类的研究 | 采用多通道一维卷积神经网络(1D-CNN)结合SHAP解释性方法,提高了分类准确率并增强了模型的可解释性 | 仅针对四种蓝藻物种进行研究,样本多样性可能有限 | 开发一种快速准确识别有毒蓝藻物种的方法,以支持水质监测和有害藻华早期检测 | 四种有毒蓝藻物种:Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii 和 Microcystis aeruginosa | 机器学习 | NA | 拉曼光谱 | 1D-CNN | 光谱数据 | 四种蓝藻物种的光谱数据 |
8 | 2025-04-24 |
Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127931
PMID:40112588
|
研究论文 | 本研究提出了一种结合表面增强拉曼光谱(SERS)和深度学习的新方法,用于快速识别药食同源物质(MEHs) | 利用基于光谱集的SERS(称为'SERSome')与深度学习结合,开发了一种新型识别模型,避免了反应过程中额外保护剂的使用,并克服了MEHs的荧光干扰 | NA | 提高药食同源物质的质量控制和快速识别能力 | 药食同源物质(MEHs) | 机器学习 | NA | 表面增强拉曼光谱(SERS) | 深度学习 | 光谱数据 | NA |
9 | 2025-04-24 |
Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy
2025-Sep-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.127937
PMID:40127553
|
研究论文 | 本文提出了一种基于iTransformer-BiLSTM(iTBi)深度学习算法和随机森林(RF)算法的LIBS定量分析模型,用于精确测定稀土矿石中的La、Ce和Nd元素浓度 | 提出iTBi-LIBS和iTBi-RF-LIBS集成模型,有效降低基质效应和光谱重叠干扰,提高了定量分析的准确性 | 样本量较小(35个样本),且浓度范围有限(La: 0-1.924wt%, Ce: 0-2.917wt%, Nd: 0-1.492wt%) | 开发一种高效的LIBS定量分析方法,用于稀土矿石中La、Ce和Nd元素的实时定量分析 | 稀土矿石中的La、Ce和Nd元素 | 机器学习 | NA | 激光诱导击穿光谱(LIBS) | iTransformer-BiLSTM(iTBi)、随机森林(RF) | 光谱数据 | 35个样本 |