本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 81 | 2025-11-19 |
Super-Resolution MR Spectroscopic Imaging via Diffusion Models for Tumor Metabolism Mapping
2025-Sep-02, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01652-x
PMID:40897835
|
研究论文 | 提出基于条件去噪扩散概率模型的深度学习框架,用于磁共振波谱成像的超分辨率重建,以改善脑胶质瘤代谢成像 | 首次将条件去噪扩散概率模型应用于MRSI超分辨率重建,采用自注意力UNet骨干网络整合全局上下文特征 | 主要针对IDH突变型胶质瘤进行研究,在其他类型神经系统疾病中的适用性需进一步验证 | 开发高分辨率磁共振波谱成像技术以改善肿瘤代谢成像质量 | IDH突变型胶质瘤患者和健康志愿者的磁共振波谱成像数据 | 医学影像分析 | 脑胶质瘤 | 磁共振波谱成像 | 扩散模型 | 医学影像 | 模拟患者数据和体内MRSI数据(包括健康志愿者和胶质瘤患者) | PyTorch | Self-Attention UNet | SSIM, PSNR, LPIPS | NA |
| 82 | 2025-11-18 |
Explainable ResNet-long short-term memory model for the classification of bowel sounds frequency based on multifeature fusion
2025-Sep, The Journal of international medical research
IF:1.4Q4
DOI:10.1177/03000605251376915
PMID:41027655
|
研究论文 | 开发基于多特征融合的可解释ResNet-LSTM模型用于肠鸣音频率分类 | 提出结合ResNet50 V2和长短期记忆网络的多特征融合方法,并采用局部可解释模型无关解释增强模型透明度 | NA | 肠鸣音活动水平的准确客观分类,用于胃肠功能评估 | 肠鸣音音频数据 | 机器学习 | 胃肠疾病 | 音频特征提取 | CNN, LSTM | 音频 | 来自三个医疗机构的前瞻性多中心研究 | NA | ResNet50 V2, LSTM | 准确率, 马修斯相关系数, 加权科恩卡帕系数, 灵敏度, 特异性 | NA |
| 83 | 2025-11-16 |
Early diagnosis of knee osteoarthritis severity using vision transformer
2025-Sep-30, BMC musculoskeletal disorders
IF:2.2Q3
DOI:10.1186/s12891-025-09137-2
PMID:41029374
|
研究论文 | 本研究利用视觉变换器(ViT)实现膝关节骨关节炎严重程度的早期诊断和KL分级 | 首次将视觉变换器(ViT)应用于膝关节骨关节炎的KL分级,并通过简单的迁移学习技术获得了优于复杂架构的性能 | 未详细说明数据集的具体规模和多样性,缺乏与其他先进方法的全面对比 | 开发基于深度学习的膝关节骨关节炎自动诊断系统以提高临床效率 | 膝关节骨关节炎患者的医学影像数据 | 计算机视觉 | 骨关节炎 | MRI, X-ray | ViT | 医学影像 | NA | NA | Vision Transformer | 准确率 | NA |
| 84 | 2025-11-16 |
Automatic Body Region Classification in CT Scans Using Deep Learning
2025-Sep-26, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01662-9
PMID:41006721
|
研究论文 | 本研究开发了一种基于深度学习的CT扫描自动身体区域分类方法 | 在多种采集协议和患者群体下实现高精度的全身CT区域分类 | 数据集仅包含45个医疗中心的5485个扫描样本,可能需要更多样化的数据验证泛化能力 | 优化医学影像诊断和分析工作流程中的身体区域自动分类 | 全身CT扫描图像 | 医学影像分析 | NA | CT扫描 | 深度学习 | CT图像 | 5485个匿名NIFTI格式CT扫描,来自45个医疗中心 | NA | NA | 准确率, 精确率, 召回率, F1分数 | NA |
| 85 | 2025-11-15 |
Deep learning-aided optical biopsy achieves whole-chain diagnosis of Correa cascade of gastric cancer: a prospective study
2025-Sep-30, BMC medicine
IF:7.0Q1
DOI:10.1186/s12916-025-04310-9
PMID:41029674
|
研究论文 | 开发基于深度学习的pCLE计算机辅助诊断系统,实现胃癌Correa级联的实时全链条诊断 | 首次构建能够实时诊断胃癌Correa级联全链条病变的深度学习辅助系统 | 研究在单一临床中心进行,需要多中心验证 | 开发pCLE计算机辅助诊断系统并评估其在真实临床环境中的诊断性能 | 胃黏膜病变患者 | 数字病理 | 胃癌 | 探头共聚焦激光内镜(pCLE) | 深度学习网络 | 图像,视频 | 5771次检查的47,462张pCLE图像和461段视频用于开发,951名患者的1254个病灶用于前瞻性验证 | NA | NA | 准确率,敏感性,特异性 | NA |
| 86 | 2025-11-15 |
Leveraging MobileNetV2 and deep learning innovation for high accuracy Plasmodium Vivax detection in blood smears
2025-Sep-29, Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society
IF:3.0Q2
DOI:10.1007/s44446-025-00019-1
PMID:41021108
|
研究论文 | 本研究提出了一种基于改进MobileNetV2和YOLOv3的深度学习模型,用于在薄血涂片图像中高精度检测间日疟原虫 | 在YOLOv3的主干网络中引入改进的MobileNetV2,并在瓶颈层使用提出的转换卷积层(TCL),根据不同类别的图像特征计算权重,提高了对感染和未感染疟原虫细胞的分类效果 | 准确率仍然是检测和分类薄血涂片类别的主要缺点之一 | 提高间日疟原虫检测模型的性能和速度,为医疗专业人员提供更好的诊断方法 | 薄血涂片图像中的间日疟原虫细胞 | 计算机视觉 | 疟疾 | 显微镜血液涂片检查 | YOLOv3, CNN | 图像 | NA | NA | YOLOv3, MobileNetV2 | 准确率, 精确率, 召回率, F1分数, 平均精度均值(mAP) | NA |
| 87 | 2025-11-15 |
High Resolution TOF-MRA Using Compressed Sensing-based Deep Learning Image Reconstruction for the Visualization of Lenticulostriate Arteries: A Preliminary Study
2025-Sep-26, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
IF:2.5Q2
DOI:10.2463/mrms.mp.2024-0025
PMID:39034144
|
研究论文 | 本研究比较压缩感知深度学习重建与传统压缩感知算法在时间飞跃磁共振血管成像中对豆纹动脉的显示效果 | 首次将压缩感知与深度学习相结合用于高分辨率TOF-MRA图像重建,并在不同加速因子下系统评估豆纹动脉显示效果 | 样本量较小(仅5名健康志愿者),属于初步研究 | 评估压缩感知深度学习重建在显示豆纹动脉方面的图像质量 | 健康志愿者的豆纹动脉 | 医学影像分析 | 脑血管疾病 | 时间飞跃磁共振血管成像 | 深度学习 | 磁共振图像 | 5名健康志愿者 | NA | NA | 可见豆纹动脉数量, 豆纹动脉长度, 归一化均方误差, 整体图像质量评分, 外周豆纹动脉可见性评分 | NA |
| 88 | 2025-11-15 |
GeneRAIN: multifaceted representation of genes via deep learning of gene expression networks
2025-Sep-22, Genome biology
IF:10.1Q1
DOI:10.1186/s13059-025-03749-6
PMID:40983974
|
研究论文 | 开发基于Transformer的GeneRAIN模型套件,从41万个人类批量RNA-seq样本中学习基因表达关系 | 提出新颖的Binning-By-Gene标准化技术和GeneRAIN-vec多面向量化基因表示方法,在知识迁移方面实现突破 | NA | 推进Transformer和自监督深度学习在基因表达数据中的应用,增强生物学探索能力 | 人类基因表达数据,包括蛋白质编码基因和长链非编码RNA | 机器学习 | NA | RNA-seq | Transformer | 基因表达数据 | 410,000个人类批量RNA-seq样本 | NA | Transformer | NA | NA |
| 89 | 2025-11-15 |
EDLNet: ensemble deep learning network model for automatic brain tumor classification and segmentation
2025-Sep, Journal of biomolecular structure & dynamics
IF:2.7Q2
DOI:10.1080/07391102.2024.2311343
PMID:38345061
|
研究论文 | 提出一种集成深度学习网络模型EDLNet,用于自动脑肿瘤分类和分割 | 提出新的集成深度学习网络模型,结合改进的Faster RCNN进行分类和基于DRCNN的分割方法 | NA | 开发自动脑肿瘤分类和分割的深度学习模型 | 脑部MRI扫描图像 | 数字病理 | 脑肿瘤 | MRI扫描 | 集成深度学习,Faster RCNN,深度循环卷积神经网络 | 医学图像 | 两个公开数据集(D1和D2),具体样本数量未明确说明 | NA | EDLNet,Modified Faster RCNN,DRCNN | 准确率 | NA |
| 90 | 2025-11-14 |
Modeling protein-small molecule conformational ensembles with PLACER
2025-Sep-27, bioRxiv : the preprint server for biology
DOI:10.1101/2024.09.25.614868
PMID:39386615
|
研究论文 | 开发了一种名为PLACER的图神经网络,用于建模蛋白质-小分子相互作用的构象集合 | 提出首个基于原子级图神经网络的构象集合解析方法,相比传统残基级描述在速度和通用性方面具有优势 | 方法依赖于剑桥结构数据库和蛋白质数据库的训练数据,可能受限于现有数据的覆盖范围 | 解决蛋白质-小分子相互作用构象异质性的建模挑战 | 蛋白质-小分子复合物系统 | 计算生物学 | NA | 图神经网络 | GNN | 三维分子结构数据 | 来自剑桥结构数据库和蛋白质数据库的结构数据 | NA | PLACER | 结构生成准确性、酶设计成功率、催化活性 | NA |
| 91 | 2025-11-12 |
NeuHolo: non-interferometric quantitative single-shot holographic imaging for 3D metrology using neural fields
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.567074
PMID:41215303
|
研究论文 | 提出一种基于神经场网络和随机相位调制的非干涉定量单次全息成像框架NeuHolo | 首次将神经场网络与随机相位调制结合,无需物体支撑即可通过无监督深度学习从单次测量中定量估计振幅和相位 | 未明确说明计算资源需求和算法处理时间 | 开发无需干涉的非干涉定量全息成像技术 | 光场的复振幅重建 | 计算机视觉 | NA | 全息成像,随机相位调制 | 神经网络 | 强度测量数据 | NA | 深度学习框架 | 神经场网络 | 精度,视场大小 | NA |
| 92 | 2025-11-12 |
Supercell-based metasurfaces for arbitrary polarization beam splitting: physics-informed U-Net design with high extinction ratio
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.561950
PMID:41215359
|
研究论文 | 提出一种基于物理信息驱动深度学习的方法,用于设计任意偏振分束的超表面结构 | 将物理信息嵌入改进的U-Net架构,通过分解目标远场图案到正交圆偏振分量来高效恢复相位分布 | NA | 开发高效偏振控制器件设计方法 | 硅纳米柱超表面结构 | 计算光子学 | NA | FDTD模拟 | U-Net | 相位分布数据,远场图案 | NA | NA | 改进的U-Net | MSE, 偏振消光比, 传输效率 | NA |
| 93 | 2025-11-12 |
Dual deep learning network enables data-efficient two-color single-molecule localization microscopy with colorimetry camera
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.574460
PMID:41215365
|
研究论文 | 开发了一种结合双深度学习网络的CC-DeepSTORM框架,用于提升双色单分子定位显微镜的数据效率 | 提出CC-DeepLoc定位网络和CC-DeepSeparator颜色分离网络的双深度学习框架,显著提升定位精度并大幅降低数据拒绝率 | 研究主要基于模拟和单色实验数据验证,双色实验的全面性能评估有待进一步扩展 | 解决多色单分子定位显微镜技术复杂性和数据效率低下的问题 | 单分子定位显微镜图像数据 | 计算显微镜 | NA | 单分子定位显微镜(SMLM) | 深度学习网络 | 显微镜图像 | NA | 深度学习框架 | CC-DeepLoc, CC-DeepSeparator | Jaccard指数, 定位精度, 串扰率, 数据拒绝率 | NA |
| 94 | 2025-11-12 |
Research on an atmospheric turbulent channel equalization algorithm using the spatiotemporal feature fusion method
2025-Sep-22, Optics express
IF:3.2Q2
DOI:10.1364/OE.573173
PMID:41215432
|
研究论文 | 提出一种基于时空特征融合的深度学习信道均衡算法,用于消除大气湍流信道对无线光通信系统的影响 | 首次将时空特征融合方法应用于大气湍流信道均衡,突破了传统信道均衡的性能瓶颈 | NA | 解决大气湍流引起的信号衰落问题,提高无线光通信系统的传输可靠性 | 大气湍流信道模型和传输信号 | 机器学习 | NA | 深度学习 | CNN | 光强度测量数据 | NA | NA | 时空特征融合网络 | 误码率 | NA |
| 95 | 2025-11-12 |
Risk stratification of chest pain in the emergency department using artificial intelligence applied to electrocardiograms
2025-Sep-01, Open heart
IF:2.8Q2
DOI:10.1136/openhrt-2025-003343
PMID:40889954
|
研究论文 | 开发了一种基于人工智能的心电图风险分层模型(CP-AI),用于急诊胸痛患者的7天主要心血管事件预测 | 首次将深度学习模型应用于心电图数据,结合临床特征构建全自动风险分层系统,显著优于传统生物标志物模型 | 回顾性研究设计,需要在更多样化人群中验证模型泛化能力 | 改善急诊胸痛患者的风险分层,减少主观评估带来的不一致性 | 急诊胸痛患者 | 医疗人工智能 | 心血管疾病 | 深度学习,心电图分析 | 神经网络分类器 | 心电图,临床数据 | 训练集15,048名患者,外部验证集14,476名患者 | NA | 患者对比学习表示模型 | AUROC, AUPRC | NA |
| 96 | 2025-10-05 |
Correction: Javeed et al. A Hybrid Deep Learning-Driven SDN Enabled Mechanism for Secure Communication in Internet of Things (IoT). Sensors 2021, 21, 4884
2025-Sep-15, Sensors (Basel, Switzerland)
DOI:10.3390/s25185739
PMID:41013172
|
correction | 对先前发表的关于物联网安全通信的混合深度学习驱动SDN机制论文进行更正 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 97 | 2025-11-08 |
A deep learning model for epidermal growth factor receptor prediction using ensemble residual convolutional neural network
2025-Sep-29, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-18518-5
PMID:41023039
|
研究论文 | 提出一种基于集成残差卷积神经网络的深度学习模型ERCNN-EGFR,用于从氨基酸序列准确预测表皮生长因子受体 | 首次将集成残差卷积神经网络应用于EGFR预测,结合多种蛋白质特征提取方法和特征选择策略 | 模型在独立测试集上的准确率(82.85%)较训练集有所下降,可能存在泛化能力限制 | 开发准确识别表皮生长因子受体的计算方法 | 表皮生长因子受体蛋白质 | 生物信息学 | 乳腺癌 | 蛋白质序列分析 | BiLSTM, GRU, GAN, CNN | 蛋白质氨基酸序列 | NA | NA | Ensemble Residual Convolutional Neural Network | 准确率, 灵敏度, 特异性, 马修斯相关系数 | NA |
| 98 | 2025-11-08 |
Enhancing communication for people with hearing disabilities through robust sign language recognition using deep learning and the internet of things
2025-Sep-24, Disability and rehabilitation. Assistive technology
DOI:10.1080/17483107.2025.2562454
PMID:40990717
|
研究论文 | 提出一种结合深度学习和物联网的鲁棒手语识别方法,以增强听力障碍人士的沟通能力 | 提出ECRSLR-SAEHD方法,结合稀疏自编码器和Fennec Fox算法进行超参数调优,并集成物联网技术 | 仅使用基准数据集进行验证,未提及实际部署中的挑战 | 通过鲁棒手语识别技术改善听力障碍人士的沟通能力 | 听力障碍人士的手语识别 | 计算机视觉 | 听力障碍 | 深度学习,物联网 | 稀疏自编码器(SAE), EfficientNetB7 | 图像 | 基准数据集(未指定具体数量) | NA | EfficientNetB7, 稀疏自编码器 | 准确率 | NA |
| 99 | 2025-11-08 |
A novel hybrid deep learning model for segmentation and uzzy Res-LeNet based classification for Alzheimer's disease
2025-Sep-24, Neurogenetics
IF:1.6Q3
DOI:10.1007/s10048-025-00837-4
PMID:40991056
|
研究论文 | 提出一种用于阿尔茨海默病分割和分类的混合深度学习方法 | 提出O-SegUNet分割方法和融合模糊逻辑、ResNeXt和LeNet的Fuzzy Res-LeNet分类模型 | NA | 阿尔茨海默病的早期检测和分类 | 阿尔茨海默病患者的大脑MRI图像 | 医学影像分析 | 阿尔茨海默病 | 磁共振成像 | 混合深度学习模型 | 医学图像 | NA | NA | O-SegUNet, Fuzzy Res-LeNet, SegNet, U-Net, ResNeXt, LeNet | 准确率, 敏感度, 特异性 | NA |
| 100 | 2025-09-19 |
Letter to the Editor: Technical considerations in the development of a multimodal deep learning model for predicting hepatocellular carcinoma outcomes
2025-Sep-17, Hepatology (Baltimore, Md.)
DOI:10.1097/HEP.0000000000001534
PMID:40960952
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |