深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202509-202509] [清除筛选条件]
当前共找到 120 篇文献,本页显示第 101 - 120 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
101 2025-06-08
Longitudinal Comparison of Geographic Atrophy Enlargement Using Manual, Semiautomated, and Deep Learning Approaches
2025 Sep-Oct, Ophthalmology science IF:3.2Q1
research paper 比较了全自动AI模型、半自动化方法和手动平面测量在纵向评估地理萎缩(GA)中的表现 首次比较了全自动AI模型、半自动化方法和手动平面测量在GA评估中的一致性,并评估了AI模型的性能 研究为回顾性分析,样本量有限(108名患者,185只眼),且AI模型在15%的情况下需要人工干预 评估不同方法在GA纵向评估中的一致性和准确性 地理萎缩(GA)患者 digital pathology geriatric disease fundus autofluorescence imaging AI (deep learning) image 108名患者(185只眼)
102 2025-06-07
Advanced data-driven interpretable analysis for predicting resistant starch content in rice using NIR spectroscopy
2025-Sep-15, Food chemistry IF:8.5Q1
研究论文 本研究提出了一种结合近红外光谱(NIR)和卷积神经网络(CNN)的创新数据驱动框架,用于快速、经济高效地预测大米中的抗性淀粉(RS)含量 创新性地将CNN与数据增强技术结合,并利用SHAP方法解释模型,显著提高了预测精度并缩小了关键波长范围 深度学习模型的'黑箱'特性虽然通过SHAP得到部分解释,但可能仍存在其他未被发现的局限性 开发一种快速、经济高效的大米抗性淀粉含量预测方法 大米中的抗性淀粉(RS) 机器学习 NA 近红外光谱(NIR) CNN 光谱数据 NA
103 2025-06-07
Intelligent transformation of ultrasound-assisted novel solvent extraction plant active ingredients: Tools for machine learning and deep learning
2025-Sep-15, Food chemistry IF:8.5Q1
综述 本文综述了机器学习和深度学习模型在超声波辅助新型溶剂提取植物活性成分中的应用进展 利用机器学习和深度学习模型解决超声波辅助提取中的挑战,包括加速新型溶剂筛选、促进活性成分发现、优化复杂提取过程、深入分析提取机制以及实时监控超声波设备 模型可解释性、数据集标准化和工业可扩展性等挑战 推动超声波辅助提取技术的智能化转型 植物活性成分 机器学习 NA 超声波辅助提取(UAE) 机器学习和深度学习模型 NA NA
104 2025-06-07
Smartphone-integrated Nanozyme approaches for rapid and on-site detection: Empowering smart food safety
2025-Sep-15, Food chemistry IF:8.5Q1
review 本文综述了智能手机集成的纳米酶技术在食品安全快速现场检测中的应用及其进展 探讨了智能手机与纳米酶技术结合用于实时生物传感的创新点,以及与AI、ML、DL和3D打印技术结合的潜力 讨论了提高灵敏度、实现多重检测和现场应用验证等关键挑战 旨在推动智能食品安全系统的发展,实现实时现场检测以确保食品质量和公共健康 食源性病原体、污染物、食品添加剂、营养素及有害残留物(如农药和兽药) 食品安全 NA 纳米酶技术、AI、ML、DL、3D打印 NA 实时生物传感数据 NA
105 2025-06-07
Digital image-based chemometrics for food analysis: a practical tutorial and roadmap
2025-Sep-15, Food chemistry IF:8.5Q1
综述 本文综述了数字图像在食品分析中的应用,提供了从单变量方法到多变量分类/校准方法的路线图,并通过三个案例研究展示了其在食品安全和质量方面的潜力 介绍了混合颜色描述符、色度图、深度学习架构和时间分辨RGB成像等最新进展,提高了这些技术在食品科学中的稳健性和适用性 该领域面临关键挑战,特别是缺乏方法学标准化,文献中多样化的应用证明了这一点 开发食品质量控制中的分析方法 食品 化学计量学 NA 数字图像处理 深度学习架构 图像 NA
106 2025-06-06
End-to-End Deep Learning-Based Motion Correction and Reconstruction for Accelerated Whole-Heart Joint T1/T2 Mapping
2025-Sep, Magnetic resonance imaging IF:2.1Q2
研究论文 提出一种端到端深度学习算法,用于加速3D全心联合T1/T2映射,通过联合运动估计和基于模型的运动校正重建多对比度欠采样数据 采用端到端非刚性运动校正重建网络,显著减少重建时间(从2.5小时缩短至24秒),同时保持T1和T2值的良好一致性 未提及具体样本量或临床验证范围 加速全心心肌组织表征的3D联合T1/T2映射 多对比度欠采样MRI数据 医学影像分析 心血管疾病 深度学习算法、MRI多对比度成像 端到端非刚性运动校正重建网络 3D MRI影像 NA
107 2025-06-06
Self-supervised learning for MRI reconstruction through mapping resampled k-space data to resampled k-space data
2025-Sep, Magnetic resonance imaging IF:2.1Q2
研究论文 本文提出了一种自监督深度学习方法RSSDU,用于从欠采样的MRI数据中高效准确地重建图像,无需完全采样数据集作为参考 提出了一种新的自监督学习方法RSSDU,通过两次重采样k空间数据并训练网络从一个子集映射到另一个子集,无需完全采样数据 未提及具体在哪些临床场景下该方法可能表现不佳 开发一种无需完全采样数据的MRI图像重建方法 欠采样的MRI数据 医学影像处理 NA 深度学习 DL MRI k空间数据 未提及具体样本量
108 2025-06-06
Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI
2025-Sep, Magnetic resonance imaging IF:2.1Q2
研究论文 开发基于多参数乳腺MRI的放射组学和深度学习的多模态模型,用于预测乳腺癌术前Ki-67表达状态 结合放射组学和深度学习技术,利用多参数MRI数据预测Ki-67表达状态,为乳腺癌个体化治疗和精准医疗提供潜在工具 样本量相对较小(176例),且未提及外部验证集的结果 预测乳腺癌术前Ki-67表达状态,以推进个体化治疗和精准医疗 176例浸润性乳腺癌患者 数字病理 乳腺癌 多参数MRI(T1WI、DWI、T2WI、DCE-MRI) 深度学习模型(具体类型未明确说明) MRI图像 176例浸润性乳腺癌患者(训练集70%,测试集30%)
109 2025-06-06
Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo
2025-Sep, Magnetic resonance imaging IF:2.1Q2
研究论文 本研究评估了基于深度学习的超分辨率技术在减少前列腺扩散加权成像(DWI)扫描时间的同时保持图像质量的可行性和有效性 使用多尺度自相似网络(MSSNet)进行图像重建,显著减少扫描时间并提升图像质量 研究未提及对大规模临床数据集的验证,可能影响结果的普适性 评估深度学习超分辨率技术在前列腺DWI中的应用效果 前列腺扩散加权成像(DWI)数据 数字病理 前列腺癌 readout-segmented echo-planar imaging (rs-EPI) MSSNet 医学影像 未明确提及样本数量
110 2025-06-06
A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements
2025 Sep-Oct, Ophthalmology science IF:3.2Q1
研究论文 开发了一种基于多注意力头的深度学习模型,通过简单的视觉注视任务中的眼动数据来检测不同类型和严重程度的弱视患者 使用多注意力头的transformer编码器模型,首次利用眼动数据进行弱视的客观分类 样本量相对较小(135名受试者),且仅在单一医疗中心进行 开发客观检测弱视的深度学习模型 40名对照组和95名弱视患者(包括不同类型和严重程度) 计算机视觉 弱视 红外视频眼动追踪技术 多注意力头transformer编码器 眼动位置数据 135名受试者(40名对照,95名弱视患者)
111 2025-06-03
Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion
2025-Sep, Bioresource technology IF:9.7Q1
研究论文 本研究评估了几种优化算法在调整数据准备和超参数优化管道以预测甲烷产量的机器和深度学习模型中的性能 提出了元调优方法,显著提高了复杂场景下模型的准确率,特别是在动态数据集上的循环神经网络 未提及具体的数据集规模和多样性限制 优化机器学习模型在厌氧消化过程中动态甲烷预测的性能 甲烷生产预测模型 机器学习 NA 贝叶斯搜索、遗传算法、差分进化、粒子群优化 贝叶斯岭回归、循环神经网络(RNN) 稳态和动态数据集 NA
112 2025-06-03
Generative deep learning model assisted multi-objective optimization for wastewater nitrogen to protein conversion by photosynthetic bacteria
2025-Sep, Bioresource technology IF:9.7Q1
研究论文 本研究利用生成深度学习模型辅助多目标优化,实现废水氮素通过光合细菌转化为蛋白质的过程 采用生成深度学习算法(如变分自编码器)生成高质量数据,支持氮去除、蛋白质浓度和氮转化效率的多目标优化 研究在有限数据条件下进行,可能影响模型的泛化能力 优化废水氮素去除与资源回收(蛋白质生产)的平衡 光合细菌(PSB)及其在废水处理中的应用 机器学习 NA 生成深度学习、多目标优化 变分自编码器(VAE)、弹性神经网络(ENN) 实验数据 5000个与PSB氮回收相关的生成样本
113 2025-06-02
TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment
2025-Sep, Journal of medical imaging (Bellingham, Wash.)
research paper 提出一种基于深度学习的无参考CT图像质量评估方法TFKT,通过从自然图像数据集迁移知识,减少对大型标注数据集的依赖 采用混合CNN-Transformer模型,结合自然图像失真和人类标注的平均意见分数进行预训练,并在低剂量CT图像上微调,实现任务特定的适应性 需要进一步验证在更广泛临床场景中的泛化能力 开发一种无参考、自动化的CT图像质量评估方法,以更准确地反映放射科医生的评估 CT图像质量评估 computer vision NA 深度学习 CNN-Transformer混合模型 图像 约30张CT图像切片/秒的处理能力
114 2025-05-28
Detecting the authenticity of two monofloral honeys based on the Canny-GoogLeNet deep learning network combined with three-dimensional fluorescence spectroscopy
2025-Sep-01, Food chemistry IF:8.5Q1
research paper 该研究基于Canny-GoogLeNet深度学习网络结合三维荧光光谱技术,检测两种单花蜜(油菜蜜和枸杞蜜)及其掺假样品的真实性 通过优化GoogLeNet架构中的inception模块、应用L2正则化改进全连接层,并实施监控训练网络模型以减少过拟合,提升了模型鲁棒性 样本量较小(训练集133个,验证集33个,测试集12个),可能影响模型的泛化能力 开发一种高效准确的蜂蜜真实性检测方法 油菜蜜、枸杞蜜及其掺假样品(玉米糖浆或其他类型蜂蜜) computer vision NA 三维荧光光谱技术 Canny-GoogLeNet(改进的CNN架构) 光谱图像数据 总计178个样本(训练133,验证33,测试12)
115 2025-05-27
Deep learning-assisted 10-μL single droplet-based viscometry for human aqueous humor
2025-Sep-15, Biosensors & bioelectronics IF:10.7Q1
research paper 开发了一种基于深度学习的微流控粘度测量方法,用于测量人类房水的粘度 首次实现了对10微升人类房水粘度的测量,并观察到个体间约30%的差异 NA 优化青光眼治疗中的微管分流设计 人类房水 生物医学技术 青光眼 微流控技术 深度学习 视频或图像 10微升的人类房水样本
116 2025-05-27
Multi-modal multi-task deep neural networks for sleep disordered breathing assessment using cardiac and audio signals
2025-Sep, International journal of medical informatics IF:3.7Q2
研究论文 本文介绍了一种使用心脏和音频信号进行睡眠呼吸障碍评估的多模态多任务深度学习方法 结合心脏和音频信号,利用多模态数据融合提升睡眠呼吸障碍检测性能 样本量较小(161名受试者),且SDB严重程度分类的准确率有待提高(57.8%) 开发一种成本效益高且易于获取的睡眠呼吸障碍检测方法 睡眠呼吸障碍(SDB)患者 机器学习 睡眠呼吸障碍 多模态多任务深度学习 深度神经网络 心脏信号(心电图)和音频信号 161名受试者的夜间记录
117 2025-05-27
Using longitudinal data and deep learning models to enhance resource allocation in home-based medical care
2025-Sep, International journal of medical informatics IF:3.7Q2
研究论文 本研究利用纵向数据和深度学习模型优化家庭医疗资源分配 首次比较了Transformer、LSTM和GRU三种深度学习模型在家庭医疗阶段预测中的表现,并确定了5次就诊数据即可实现准确预测 研究数据仅来自台北市立医院,可能影响模型的泛化能力 通过AI预测家庭医疗阶段以优化医疗资源分配 家庭医疗患者 机器学习 老年疾病 深度学习 Transformer, LSTM, GRU 医疗记录 4,343名平均年龄85岁的患者
118 2025-04-24
Comprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainability
2025-Sep-01, Talanta IF:5.6Q1
研究论文 结合拉曼光谱和深度学习技术对四种有毒蓝藻进行分类的研究 采用多通道一维卷积神经网络(1D-CNN)结合SHAP解释性方法,提高了分类准确率并增强了模型的可解释性 仅针对四种蓝藻物种进行研究,样本多样性可能有限 开发一种快速准确识别有毒蓝藻物种的方法,以支持水质监测和有害藻华早期检测 四种有毒蓝藻物种:Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii 和 Microcystis aeruginosa 机器学习 NA 拉曼光谱 1D-CNN 光谱数据 四种蓝藻物种的光谱数据
119 2025-04-24
Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本研究提出了一种结合表面增强拉曼光谱(SERS)和深度学习的新方法,用于快速识别药食同源物质(MEHs) 利用基于光谱集的SERS(称为'SERSome')与深度学习结合,开发了一种新型识别模型,避免了反应过程中额外保护剂的使用,并克服了MEHs的荧光干扰 NA 提高药食同源物质的质量控制和快速识别能力 药食同源物质(MEHs) 机器学习 NA 表面增强拉曼光谱(SERS) 深度学习 光谱数据 NA
120 2025-04-24
Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本文提出了一种基于iTransformer-BiLSTM(iTBi)深度学习算法和随机森林(RF)算法的LIBS定量分析模型,用于精确测定稀土矿石中的La、Ce和Nd元素浓度 提出iTBi-LIBS和iTBi-RF-LIBS集成模型,有效降低基质效应和光谱重叠干扰,提高了定量分析的准确性 样本量较小(35个样本),且浓度范围有限(La: 0-1.924wt%, Ce: 0-2.917wt%, Nd: 0-1.492wt%) 开发一种高效的LIBS定量分析方法,用于稀土矿石中La、Ce和Nd元素的实时定量分析 稀土矿石中的La、Ce和Nd元素 机器学习 NA 激光诱导击穿光谱(LIBS) iTransformer-BiLSTM(iTBi)、随机森林(RF) 光谱数据 35个样本
回到顶部