本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1241 | 2025-06-11 |
The informativeness of the gradient revisited
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107517
PMID:40359739
|
research paper | 本文探讨了梯度信息在深度学习中的有效性,并提出了一个衡量梯度方差的一般性界限 | 提出了一个衡量梯度方差的一般性界限,并应用于LWE映射和高频函数类 | 理论分析可能未涵盖所有实际应用场景,实验部分仅针对特定案例 | 深入理解梯度信息在深度学习中的局限性 | 梯度信息的有效性及其在深度学习中的应用 | machine learning | NA | NA | NA | NA | NA |
1242 | 2025-06-11 |
Pruning the ensemble of convolutional neural networks using second-order cone programming
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107544
PMID:40367720
|
研究论文 | 本文提出了一种使用二阶锥规划修剪卷积神经网络集成的方法,以提高准确性和多样性 | 提出了一种稀疏二阶锥优化模型,用于修剪不同深度和层数的CNN集成,同时最大化准确性和多样性 | 仅在CIFAR-10、CIFAR-100和MNIST数据集上进行了测试,未在其他数据集上验证 | 解决深度学习模型集成中的计算复杂性问题 | 卷积神经网络(CNNs)的集成 | 机器学习 | NA | 二阶锥规划 | CNN | 图像 | CIFAR-10、CIFAR-100和MNIST数据集 |
1243 | 2025-06-11 |
SurvGraph: A hybrid-graph attention network for survival prediction using whole slide pathological images in gastric cancer
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107607
PMID:40375420
|
research paper | 介绍了一种名为SurvGraph的基于图的深度学习网络,用于利用胃癌症患者的全切片病理图像进行生存预测 | 采用混合图构建方法整合多种特征类型,并使用多头注意力图网络进行生存预测 | 未提及具体局限性 | 提高胃癌症患者的生存预测准确性 | 胃癌症患者的全切片病理图像 | digital pathology | gastric cancer | graph representation learning | hybrid-graph attention network | image | 708胃癌症患者来自三个独立队列 |
1244 | 2025-06-11 |
Enhancing the transferability of adversarial attacks via Scale Enriching
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107549
PMID:40378598
|
research paper | 本文提出了一种称为尺度丰富方法(SEM)的技术,通过输入尺度丰富框架增强对抗样本的可迁移性 | 通过特定范围内的输入尺度缩放,丰富了替代模型感知的注意力区域,并扩大了不同模型之间的容忍度,显著提高了对抗样本的可迁移性 | NA | 提高对抗样本在黑盒设置下对不同输入尺寸模型的可迁移性 | 对抗样本和深度学习模型 | computer vision | NA | Scale Enriching Method (SEM) | 深度学习模型 | image | 在ImageNet数据集上进行实验 |
1245 | 2025-06-11 |
Escarcitys: A framework for enhancing medical image classification performance in scarcity of trainable samples scenarios
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107573
PMID:40382989
|
研究论文 | 本文提出了一个名为EScarcityS的框架,旨在解决医学图像分类中训练样本稀缺的问题,通过多粒度Transformer网络和疾病概率图引导的扩散生成模型来提高分类准确率 | 设计了多粒度Transformer网络(MGVit)和疾病概率图引导的扩散生成模型,以减少对大量训练数据的依赖并生成更真实的可解释合成数据 | 实验仅在四个真实的医学图像数据集上进行,可能在其他数据集上的泛化能力有待验证 | 提高在训练样本稀缺情况下的医学图像分类准确率 | 医学图像 | 数字病理学 | NA | 深度学习 | Transformer, 扩散生成模型 | 医学图像 | 四个真实医学图像数据集 |
1246 | 2025-06-11 |
S2LIC: Learned image compression with the SwinV2 block, Adaptive Channel-wise and Global-inter attention Context
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107590
PMID:40398182
|
research paper | 提出了一种基于SwinV2块、自适应通道和全局交互注意力上下文的图像压缩方法S2LIC | 设计了自适应通道和全局交互注意力上下文(ACGC)熵模型,实现了切片间和切片内的双特征聚合,并引入残差SwinV2 Transformer模型捕获全局特征信息 | 未明确提及具体限制 | 提高图像压缩的率失真性能和编解码速度 | 图像数据 | computer vision | NA | 深度学习 | SwinV2 Transformer, ACGC | image | 三个不同数据集(Kodak、Tecnick和CLIC Pro) |
1247 | 2025-06-11 |
Visual reasoning in object-centric deep neural networks: A comparative cognition approach
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107582
PMID:40409010
|
研究论文 | 本文比较了多种以物体为中心的深度神经网络模型在视觉关系学习和泛化方面的表现 | 使用来自比较认知文献的不同复杂度任务集评估模型,而非以往研究常用的相同-不同任务 | 在更复杂的任务和条件下,以物体为中心的模型仍存在困难 | 评估以物体为中心的深度神经网络在视觉推理任务中的表现 | 以物体为中心的深度神经网络模型和ResNet-50基线模型 | 计算机视觉 | NA | 注意力机制 | 以物体为中心的模型, ResNet-50 | 图像 | NA |
1248 | 2025-06-11 |
Emergence of human-like attention and distinct head clusters in self-supervised vision transformers: A comparative eye-tracking study
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107595
PMID:40424761
|
研究论文 | 本研究探讨了自监督视觉变换器(ViTs)在模拟人类注视行为方面的表现,发现其自注意力机制能够形成与人类注视行为高度一致的结构化注意力模式 | 首次展示了自监督DINO训练的ViTs能够自发形成与人类注视行为相似的注意力模式,并识别出三种不同的注意力头集群 | 研究仅基于视频数据,未探讨其他视觉刺激下的表现 | 探索自监督视觉变换器是否能够模拟人类视觉注意力机制 | 自监督DINO训练的视觉变换器(ViTs) | 计算机视觉 | NA | 自监督学习(DINO) | ViT (Vision Transformer) | 视频 | NA |
1249 | 2025-06-11 |
VKAD: A novel fault detection and isolation model for uncertainty-aware industrial processes
2025-Sep, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107664
PMID:40435556
|
研究论文 | 提出了一种名为VKAD的新型故障检测与隔离模型,用于处理不确定性感知的工业过程 | 将Koopman算子理论与变分自编码器结合,提出VKAD模型,能够推断动态系统观测值的分布并捕获系统演化的不确定性 | 未明确提及 | 提高工业过程中故障检测与隔离的准确性和可靠性 | 工业过程的动态系统 | 机器学习 | NA | 变分自编码器 | VKAD(Variational Koopman Anomaly Detector) | 时间序列数据 | Tennessee Eastman Process (TEP)数据集和真实卫星在轨遥测数据集(SAT) |
1250 | 2025-06-10 |
Decision support system based on ensemble models in distinguishing epilepsy types
2025-Sep, Epilepsy & behavior : E&B
IF:2.3Q2
DOI:10.1016/j.yebeh.2025.110470
PMID:40382997
|
研究论文 | 本研究旨在基于EEG结果,利用人工智能模型对患者的局灶性(额叶、颞叶、顶叶、枕叶)、多灶性和全面性癫痫样活动进行分类 | 结合数据增强和集成AI模型,提出了一种新的决策支持系统,用于癫痫类型分类,准确率达到98% | 研究基于回顾性数据,可能存在选择偏差 | 开发一种基于AI的决策支持系统,用于癫痫类型的分类 | 575名在Adana City Training and Research Hospital神经内科癫痫门诊随访的患者 | 机器学习 | 癫痫 | EEG | MLP, Random Forest, SVM, XGBoost | EEG数据 | 575名患者 |
1251 | 2025-06-09 |
HBUED: An EEG dataset for emotion recognition
2025-Sep-15, Journal of affective disorders
IF:4.9Q1
DOI:10.1016/j.jad.2025.119397
PMID:40368143
|
research paper | 该研究提出了一个大规模EEG数据集HBUED,并开发了一种深度学习方法来提高基于EEG的情绪识别性能 | 提出了一个大规模EEG数据集HBUED,并设计了一种双输入网络架构和平行特征提取模块来提升情绪识别性能 | 未提及具体的数据集样本多样性或模型在其他数据集上的泛化能力 | 提高基于EEG的情绪识别性能 | EEG信号和人类情绪识别 | machine learning | NA | 深度学习 | 双输入网络架构 | EEG信号 | 大规模EEG数据集HBUED和公开DEAP数据集 |
1252 | 2025-06-08 |
Longitudinal Comparison of Geographic Atrophy Enlargement Using Manual, Semiautomated, and Deep Learning Approaches
2025 Sep-Oct, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2025.100787
PMID:40469899
|
research paper | 比较了全自动AI模型、半自动化方法和手动平面测量在纵向评估地理萎缩(GA)中的表现 | 首次比较了全自动AI模型、半自动化方法和手动平面测量在GA评估中的一致性,并评估了AI模型的性能 | 研究为回顾性分析,样本量有限(108名患者,185只眼),且AI模型在15%的情况下需要人工干预 | 评估不同方法在GA纵向评估中的一致性和准确性 | 地理萎缩(GA)患者 | digital pathology | geriatric disease | fundus autofluorescence imaging | AI (deep learning) | image | 108名患者(185只眼) |
1253 | 2025-06-07 |
Advanced data-driven interpretable analysis for predicting resistant starch content in rice using NIR spectroscopy
2025-Sep-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144311
PMID:40334489
|
研究论文 | 本研究提出了一种结合近红外光谱(NIR)和卷积神经网络(CNN)的创新数据驱动框架,用于快速、经济高效地预测大米中的抗性淀粉(RS)含量 | 创新性地将CNN与数据增强技术结合,并利用SHAP方法解释模型,显著提高了预测精度并缩小了关键波长范围 | 深度学习模型的'黑箱'特性虽然通过SHAP得到部分解释,但可能仍存在其他未被发现的局限性 | 开发一种快速、经济高效的大米抗性淀粉含量预测方法 | 大米中的抗性淀粉(RS) | 机器学习 | NA | 近红外光谱(NIR) | CNN | 光谱数据 | NA |
1254 | 2025-06-07 |
Intelligent transformation of ultrasound-assisted novel solvent extraction plant active ingredients: Tools for machine learning and deep learning
2025-Sep-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144649
PMID:40349518
|
综述 | 本文综述了机器学习和深度学习模型在超声波辅助新型溶剂提取植物活性成分中的应用进展 | 利用机器学习和深度学习模型解决超声波辅助提取中的挑战,包括加速新型溶剂筛选、促进活性成分发现、优化复杂提取过程、深入分析提取机制以及实时监控超声波设备 | 模型可解释性、数据集标准化和工业可扩展性等挑战 | 推动超声波辅助提取技术的智能化转型 | 植物活性成分 | 机器学习 | NA | 超声波辅助提取(UAE) | 机器学习和深度学习模型 | NA | NA |
1255 | 2025-06-07 |
Smartphone-integrated Nanozyme approaches for rapid and on-site detection: Empowering smart food safety
2025-Sep-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144678
PMID:40359792
|
review | 本文综述了智能手机集成的纳米酶技术在食品安全快速现场检测中的应用及其进展 | 探讨了智能手机与纳米酶技术结合用于实时生物传感的创新点,以及与AI、ML、DL和3D打印技术结合的潜力 | 讨论了提高灵敏度、实现多重检测和现场应用验证等关键挑战 | 旨在推动智能食品安全系统的发展,实现实时现场检测以确保食品质量和公共健康 | 食源性病原体、污染物、食品添加剂、营养素及有害残留物(如农药和兽药) | 食品安全 | NA | 纳米酶技术、AI、ML、DL、3D打印 | NA | 实时生物传感数据 | NA |
1256 | 2025-06-07 |
Digital image-based chemometrics for food analysis: a practical tutorial and roadmap
2025-Sep-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.144531
PMID:40367821
|
综述 | 本文综述了数字图像在食品分析中的应用,提供了从单变量方法到多变量分类/校准方法的路线图,并通过三个案例研究展示了其在食品安全和质量方面的潜力 | 介绍了混合颜色描述符、色度图、深度学习架构和时间分辨RGB成像等最新进展,提高了这些技术在食品科学中的稳健性和适用性 | 该领域面临关键挑战,特别是缺乏方法学标准化,文献中多样化的应用证明了这一点 | 开发食品质量控制中的分析方法 | 食品 | 化学计量学 | NA | 数字图像处理 | 深度学习架构 | 图像 | NA |
1257 | 2025-06-06 |
End-to-End Deep Learning-Based Motion Correction and Reconstruction for Accelerated Whole-Heart Joint T1/T2 Mapping
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110396
PMID:40268172
|
研究论文 | 提出一种端到端深度学习算法,用于加速3D全心联合T1/T2映射,通过联合运动估计和基于模型的运动校正重建多对比度欠采样数据 | 采用端到端非刚性运动校正重建网络,显著减少重建时间(从2.5小时缩短至24秒),同时保持T1和T2值的良好一致性 | 未提及具体样本量或临床验证范围 | 加速全心心肌组织表征的3D联合T1/T2映射 | 多对比度欠采样MRI数据 | 医学影像分析 | 心血管疾病 | 深度学习算法、MRI多对比度成像 | 端到端非刚性运动校正重建网络 | 3D MRI影像 | NA |
1258 | 2025-06-06 |
Self-supervised learning for MRI reconstruction through mapping resampled k-space data to resampled k-space data
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110404
PMID:40324545
|
研究论文 | 本文提出了一种自监督深度学习方法RSSDU,用于从欠采样的MRI数据中高效准确地重建图像,无需完全采样数据集作为参考 | 提出了一种新的自监督学习方法RSSDU,通过两次重采样k空间数据并训练网络从一个子集映射到另一个子集,无需完全采样数据 | 未提及具体在哪些临床场景下该方法可能表现不佳 | 开发一种无需完全采样数据的MRI图像重建方法 | 欠采样的MRI数据 | 医学影像处理 | NA | 深度学习 | DL | MRI k空间数据 | 未提及具体样本量 |
1259 | 2025-06-06 |
Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo
2025-Sep, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110418
PMID:40368253
|
研究论文 | 本研究评估了基于深度学习的超分辨率技术在减少前列腺扩散加权成像(DWI)扫描时间的同时保持图像质量的可行性和有效性 | 使用多尺度自相似网络(MSSNet)进行图像重建,显著减少扫描时间并提升图像质量 | 研究未提及对大规模临床数据集的验证,可能影响结果的普适性 | 评估深度学习超分辨率技术在前列腺DWI中的应用效果 | 前列腺扩散加权成像(DWI)数据 | 数字病理 | 前列腺癌 | readout-segmented echo-planar imaging (rs-EPI) | MSSNet | 医学影像 | 未明确提及样本数量 |
1260 | 2025-06-06 |
A Multihead Attention Deep Learning Algorithm to Detect Amblyopia Using Fixation Eye Movements
2025 Sep-Oct, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2025.100775
PMID:40458668
|
研究论文 | 开发了一种基于多注意力头的深度学习模型,通过简单的视觉注视任务中的眼动数据来检测不同类型和严重程度的弱视患者 | 使用多注意力头的transformer编码器模型,首次利用眼动数据进行弱视的客观分类 | 样本量相对较小(135名受试者),且仅在单一医疗中心进行 | 开发客观检测弱视的深度学习模型 | 40名对照组和95名弱视患者(包括不同类型和严重程度) | 计算机视觉 | 弱视 | 红外视频眼动追踪技术 | 多注意力头transformer编码器 | 眼动位置数据 | 135名受试者(40名对照,95名弱视患者) |