深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202509-202509] [清除筛选条件]
当前共找到 1270 篇文献,本页显示第 1261 - 1270 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1261 2025-06-03
Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion
2025-Sep, Bioresource technology IF:9.7Q1
研究论文 本研究评估了几种优化算法在调整数据准备和超参数优化管道以预测甲烷产量的机器和深度学习模型中的性能 提出了元调优方法,显著提高了复杂场景下模型的准确率,特别是在动态数据集上的循环神经网络 未提及具体的数据集规模和多样性限制 优化机器学习模型在厌氧消化过程中动态甲烷预测的性能 甲烷生产预测模型 机器学习 NA 贝叶斯搜索、遗传算法、差分进化、粒子群优化 贝叶斯岭回归、循环神经网络(RNN) 稳态和动态数据集 NA
1262 2025-06-03
Generative deep learning model assisted multi-objective optimization for wastewater nitrogen to protein conversion by photosynthetic bacteria
2025-Sep, Bioresource technology IF:9.7Q1
研究论文 本研究利用生成深度学习模型辅助多目标优化,实现废水氮素通过光合细菌转化为蛋白质的过程 采用生成深度学习算法(如变分自编码器)生成高质量数据,支持氮去除、蛋白质浓度和氮转化效率的多目标优化 研究在有限数据条件下进行,可能影响模型的泛化能力 优化废水氮素去除与资源回收(蛋白质生产)的平衡 光合细菌(PSB)及其在废水处理中的应用 机器学习 NA 生成深度学习、多目标优化 变分自编码器(VAE)、弹性神经网络(ENN) 实验数据 5000个与PSB氮回收相关的生成样本
1263 2025-06-02
TFKT V2: task-focused knowledge transfer from natural images for computed tomography perceptual image quality assessment
2025-Sep, Journal of medical imaging (Bellingham, Wash.)
research paper 提出一种基于深度学习的无参考CT图像质量评估方法TFKT,通过从自然图像数据集迁移知识,减少对大型标注数据集的依赖 采用混合CNN-Transformer模型,结合自然图像失真和人类标注的平均意见分数进行预训练,并在低剂量CT图像上微调,实现任务特定的适应性 需要进一步验证在更广泛临床场景中的泛化能力 开发一种无参考、自动化的CT图像质量评估方法,以更准确地反映放射科医生的评估 CT图像质量评估 computer vision NA 深度学习 CNN-Transformer混合模型 图像 约30张CT图像切片/秒的处理能力
1264 2025-05-28
Detecting the authenticity of two monofloral honeys based on the Canny-GoogLeNet deep learning network combined with three-dimensional fluorescence spectroscopy
2025-Sep-01, Food chemistry IF:8.5Q1
research paper 该研究基于Canny-GoogLeNet深度学习网络结合三维荧光光谱技术,检测两种单花蜜(油菜蜜和枸杞蜜)及其掺假样品的真实性 通过优化GoogLeNet架构中的inception模块、应用L2正则化改进全连接层,并实施监控训练网络模型以减少过拟合,提升了模型鲁棒性 样本量较小(训练集133个,验证集33个,测试集12个),可能影响模型的泛化能力 开发一种高效准确的蜂蜜真实性检测方法 油菜蜜、枸杞蜜及其掺假样品(玉米糖浆或其他类型蜂蜜) computer vision NA 三维荧光光谱技术 Canny-GoogLeNet(改进的CNN架构) 光谱图像数据 总计178个样本(训练133,验证33,测试12)
1265 2025-05-27
Deep learning-assisted 10-μL single droplet-based viscometry for human aqueous humor
2025-Sep-15, Biosensors & bioelectronics IF:10.7Q1
research paper 开发了一种基于深度学习的微流控粘度测量方法,用于测量人类房水的粘度 首次实现了对10微升人类房水粘度的测量,并观察到个体间约30%的差异 NA 优化青光眼治疗中的微管分流设计 人类房水 生物医学技术 青光眼 微流控技术 深度学习 视频或图像 10微升的人类房水样本
1266 2025-05-27
Multi-modal multi-task deep neural networks for sleep disordered breathing assessment using cardiac and audio signals
2025-Sep, International journal of medical informatics IF:3.7Q2
研究论文 本文介绍了一种使用心脏和音频信号进行睡眠呼吸障碍评估的多模态多任务深度学习方法 结合心脏和音频信号,利用多模态数据融合提升睡眠呼吸障碍检测性能 样本量较小(161名受试者),且SDB严重程度分类的准确率有待提高(57.8%) 开发一种成本效益高且易于获取的睡眠呼吸障碍检测方法 睡眠呼吸障碍(SDB)患者 机器学习 睡眠呼吸障碍 多模态多任务深度学习 深度神经网络 心脏信号(心电图)和音频信号 161名受试者的夜间记录
1267 2025-05-27
Using longitudinal data and deep learning models to enhance resource allocation in home-based medical care
2025-Sep, International journal of medical informatics IF:3.7Q2
研究论文 本研究利用纵向数据和深度学习模型优化家庭医疗资源分配 首次比较了Transformer、LSTM和GRU三种深度学习模型在家庭医疗阶段预测中的表现,并确定了5次就诊数据即可实现准确预测 研究数据仅来自台北市立医院,可能影响模型的泛化能力 通过AI预测家庭医疗阶段以优化医疗资源分配 家庭医疗患者 机器学习 老年疾病 深度学习 Transformer, LSTM, GRU 医疗记录 4,343名平均年龄85岁的患者
1268 2025-04-24
Comprehensive Raman spectroscopy analysis for differentiating toxic cyanobacteria through multichannel 1D-CNNs and SHAP-based explainability
2025-Sep-01, Talanta IF:5.6Q1
研究论文 结合拉曼光谱和深度学习技术对四种有毒蓝藻进行分类的研究 采用多通道一维卷积神经网络(1D-CNN)结合SHAP解释性方法,提高了分类准确率并增强了模型的可解释性 仅针对四种蓝藻物种进行研究,样本多样性可能有限 开发一种快速准确识别有毒蓝藻物种的方法,以支持水质监测和有害藻华早期检测 四种有毒蓝藻物种:Dolichospermum crassum, Aphanizomenon sp., Planktothrix agardhii 和 Microcystis aeruginosa 机器学习 NA 拉曼光谱 1D-CNN 光谱数据 四种蓝藻物种的光谱数据
1269 2025-04-24
Advanced SERSome-based artificial-intelligence technology for identifying medicinal and edible homologs
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本研究提出了一种结合表面增强拉曼光谱(SERS)和深度学习的新方法,用于快速识别药食同源物质(MEHs) 利用基于光谱集的SERS(称为'SERSome')与深度学习结合,开发了一种新型识别模型,避免了反应过程中额外保护剂的使用,并克服了MEHs的荧光干扰 NA 提高药食同源物质的质量控制和快速识别能力 药食同源物质(MEHs) 机器学习 NA 表面增强拉曼光谱(SERS) 深度学习 光谱数据 NA
1270 2025-04-24
Transformer-based deep learning models for quantification of La, Ce, and Nd in rare earth ores using laser-induced breakdown spectroscopy
2025-Sep-01, Talanta IF:5.6Q1
研究论文 本文提出了一种基于iTransformer-BiLSTM(iTBi)深度学习算法和随机森林(RF)算法的LIBS定量分析模型,用于精确测定稀土矿石中的La、Ce和Nd元素浓度 提出iTBi-LIBS和iTBi-RF-LIBS集成模型,有效降低基质效应和光谱重叠干扰,提高了定量分析的准确性 样本量较小(35个样本),且浓度范围有限(La: 0-1.924wt%, Ce: 0-2.917wt%, Nd: 0-1.492wt%) 开发一种高效的LIBS定量分析方法,用于稀土矿石中La、Ce和Nd元素的实时定量分析 稀土矿石中的La、Ce和Nd元素 机器学习 NA 激光诱导击穿光谱(LIBS) iTransformer-BiLSTM(iTBi)、随机森林(RF) 光谱数据 35个样本
回到顶部