深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202510-202510] [清除筛选条件]
当前共找到 30 篇文献,本页显示第 21 - 30 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
21 2025-06-07
iEnhancer-DS: Attention-based improved densenet for identifying enhancers and their strength
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 提出了一种基于深度学习的多任务框架iEnhancer-DS,用于增强子识别及其强度分类 结合改进的DenseNet模块和自注意力机制,动态评估特征重要性并分配权重,提高了增强子识别和强度预测的性能 未提及具体的数据集规模或多样性限制 开发计算方法来快速准确地识别增强子及其强度 DNA序列中的增强子及其强度 生物信息学 NA one-hot编码和核苷酸化学性质(NCP) 改进的DenseNet和自注意力机制 DNA序列数据 NA
22 2025-06-06
Incremental learning for acute lymphoblastic leukemia classification based on hybrid deep learning using blood smear image
2025-Oct, Computational biology and chemistry IF:2.6Q2
research paper 该研究提出了一种基于混合深度学习的增量学习方法,用于血涂片图像中急性淋巴细胞白血病的精确分类 提出了TSCO-L-LeNet模型,结合Tangent Sand Cat Swarm Optimization和长短期记忆网络,采用增量学习方法提高分类准确率 未提及模型在其他类型白血病或更大规模数据集上的泛化能力 开发一种快速、准确的白血病自动诊断方法 急性淋巴细胞白血病患者的血涂片图像 digital pathology leukemia 图像处理、深度学习 TSCO-L-LeNet (结合LSTM和LeNet的混合模型) image 未明确提及具体样本数量
23 2025-06-06
MGMA-DTI: Drug target interaction prediction using multi-order gated convolution and multi-attention fusion
2025-Oct, Computational biology and chemistry IF:2.6Q2
research paper 提出了一种基于多门控卷积和多注意力融合的药物-靶标相互作用预测模型MGMA-DTI 使用多门控卷积增强对氨基酸序列全局特征的捕捉能力,并设计了多注意力融合模块以有效捕获药物-靶标相互作用特征 未提及具体的数据集规模限制或模型计算复杂度问题 提高药物-靶标相互作用预测的准确性和模型可解释性 药物分子和靶标蛋白质 machine learning NA graph convolutional neural network, multi-order gated convolution, multi-attention fusion MGMA-DTI SMILES字符串(药物分子),氨基酸序列(蛋白质) 三个基准数据集:BindingDB、BioSNAP和Human
24 2025-06-06
ProAttUnet: Advancing protein secondary structure prediction with deep learning via U-Net dual-pathway feature fusion and ESM2 pretrained protein language model
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 提出了一种名为ProAttUnet的新型深度学习方法,用于提升基于单序列的蛋白质二级结构预测性能 整合了最先进的蛋白质语言模型ESM2,采用独特的双路径U-Net框架进行特征融合,并引入交叉注意力机制和GCU_SE模块 NA 提升蛋白质二级结构预测的准确性 蛋白质序列 生物信息学 NA 深度学习 U-Net, ESM2 蛋白质序列数据 五个测试集(SPOT-2016, SPOT-2016-HQ, SPOT-2018, SPOT-2018-HQ和TEST2018)
25 2025-06-06
DICCA-DTA: Diffusion and Contextualized Capsule Attention guided Factorized Cross-Pooling for Drug-Target Affinity prediction
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 提出了一种名为DICCA-DTA的新框架,用于预测药物-靶标亲和力,通过改进分子信息的上下文整合和药物-靶标相互作用的全面表示 引入了扩散同构网络(DIN)和上下文胶囊注意力网络(CCAN)模块,结合因子化交叉池化(FCP)机制,动态优化药物-蛋白质相互作用建模,提高预测准确性和可解释性 未明确提及具体局限性 改进药物-靶标亲和力预测,加速药物发现和再利用过程 药物分子和蛋白质靶标 机器学习 癌症 深度学习 DIN, CCAN, FCP 分子图和蛋白质序列 Davis、KIBA、Metz和BindingDB数据集,以及DrugBank数据库中的癌症相关蛋白质相互作用案例
26 2025-06-06
scDGG: Dynamic gene graphs for enhancing clustering analysis of single-cell RNA sequencing data via spatiotemporal representations
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种名为scDGG的多视图图学习架构,用于从不同信号通路中压缩动态基因图,以增强单细胞RNA测序数据的聚类分析 提出动态基因图(dynamic gene graphs)来捕捉调控机制的动态变化,相比静态基因图能更全面地观察细胞命运和疾病进展的调控机制 未明确提及具体局限性 提高单细胞RNA测序数据的聚类分析准确性 单细胞RNA测序数据 生物信息学 NA 单细胞RNA测序(scRNA-seq) 多视图图学习架构(multi-view graph learning architecture) 基因表达数据 基准scRNA-seq数据集(未明确数量)
27 2025-06-06
NABP-LSTM-Att: Nanobody-Antigen binding prediction using bidirectional LSTM and soft attention mechanism
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 该研究提出了一种名为NABP-LSTM-Att的深度学习模型,用于仅从序列信息预测纳米抗体与抗原的结合 使用双向LSTM和软注意力机制,仅依赖序列信息预测纳米抗体与抗原的结合,无需3D结构 模型的性能依赖于SAbDab-nano数据库中的序列数据,可能无法泛化到所有未知的纳米抗体-抗原对 提高纳米抗体与抗原结合亲和力和特异性的预测能力,以促进纳米抗体药物的开发 纳米抗体和抗原的序列 自然语言处理 NA 深度学习 biLSTM和软注意力机制 序列数据 来自SAbDab-nano数据库的纳米抗体-抗原序列对
28 2025-06-06
Towards automated and reliable lung cancer detection in histopathological images using DY-FSPAN: A feature-summarized pyramidal attention network for explainable AI
2025-Oct, Computational biology and chemistry IF:2.6Q2
research paper 本研究提出了一种名为DY-FSPAN的深度学习框架,用于在组织病理学图像中实现自动化和可靠的肺癌检测 结合Y-blocks和注意力机制增强空间特征表示,同时保持感受野一致性,提高了分类准确性和可解释性 未提及具体的数据集限制或临床应用中的潜在问题 开发一个平衡性能和可解释性的医学图像分类模型,以提高肺癌诊断的准确性 肺癌组织病理学图像 digital pathology lung cancer deep learning DY-FSPAN (Dilated Y-Block-based Feature Summarized Pyramidal Attention Network) image NA
29 2025-06-04
Detection and classification of supraspinatus pathologies on shoulder magnetic resonance images using a code-free deep learning application
2025-Oct, Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology
research paper 评估无代码深度学习应用在肩部磁共振成像中诊断冈上肌腱病变的性能 使用无代码深度学习应用LobeAI和ResNet-50 V2模型进行冈上肌腱病变的分类和检测 当前迭代的无代码深度学习应用在临床实践中的可靠性有待提高 评估无代码深度学习应用在诊断冈上肌腱病变中的性能 肩部磁共振成像中的冈上肌腱病变(部分撕裂、全层撕裂和肌腱病) digital pathology supraspinatus pathologies MRI ResNet-50 V2 image 患者肩部MRI图像,包括正常、部分撕裂、全层撕裂和肌腱病
30 2025-05-19
Application of deep learning on quantitative analysis of binary solid dispersions by UV Raman spectroscopy for planetary exploration
2025-Oct-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究提出了一种名为IRMSE的深度学习模型,用于UV拉曼光谱的定量分析,以支持行星探索任务 提出结合深度残差网络和注意力机制的IRMSE模型,用于拉曼光谱的定量分析,优于传统方法 NA 验证深度学习在行星探索任务中拉曼光谱定量分析的可行性 矿物和有机化合物的固体分散体 机器学习 NA UV拉曼光谱 Inception-ResNet-v1 with squeeze-and-excitation block (IRMSE) 光谱数据 NA
回到顶部