本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 841 | 2025-10-03 |
Gradient responsive regularization: a deep learning framework for codon frequency based classification of evolutionarily conserved genes
2025-Oct-01, BMC genomic data
IF:1.9Q3
DOI:10.1186/s12863-025-01358-7
PMID:41034712
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 842 | 2025-10-03 |
Radiomics and deep learning model based on X-ray imaging for the assisted diagnosis of early Legg-Calvé-Perthes disease
2025-Oct-01, BMC musculoskeletal disorders
IF:2.2Q3
DOI:10.1186/s12891-025-09189-4
PMID:41034891
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 843 | 2025-10-05 |
Real-Time Deep-Learning Image Reconstruction and Instrument Tracking in MR-Guided Biopsies
2025-Oct-01, Journal of magnetic resonance imaging : JMRI
IF:3.3Q1
DOI:10.1002/jmri.70138
PMID:41035253
|
研究论文 | 开发基于深度学习的实时MRI图像重建和器械跟踪系统,用于加速MR引导活检手术 | 首次在临床环境中验证深度学习重建和器械跟踪方法,使用真实k空间采集数据而非模拟数据 | 样本量有限,仅8名患者用于前瞻性可行性测试,高欠采样率下性能下降 | 加速MR引导活检手术流程,实现实时器械跟踪 | 男性患者活检手术中的针导器械 | 医学影像分析 | 前列腺癌 | MRI, 深度学习 | 深度学习模型 | MR DICOM图像, k空间数据 | 1289名男性患者用于训练,8名男性患者用于测试 | NA | NA | 器械尖端预测误差, ITP成功率 | NA |
| 844 | 2025-10-05 |
Melatonin Alleviates Retina Angiogenesis by Targeting Fibronectin and the VEGF Pathway
2025-Oct-15, FASEB journal : official publication of the Federation of American Societies for Experimental Biology
IF:4.4Q2
DOI:10.1096/fj.202500814RR
PMID:41026035
|
研究论文 | 本研究通过RNA测序和深度学习模型发现褪黑素可通过靶向纤连蛋白和VEGF通路抑制视网膜血管生成 | 首次结合RNA测序和深度学习模型BioNet从FDA批准药物中发现褪黑素作为纤连蛋白抑制剂,并证实其通过双重抑制FN1表达和VEGFR2磷酸化来抑制血管生成 | 研究主要基于氧诱导视网膜病变模型,尚未在更多疾病模型或临床环境中验证 | 探索视网膜病理性血管生成的分子机制并寻找潜在治疗靶点 | 糖尿病视网膜病变和早产儿视网膜病变的血管生成机制 | 计算生物学 | 视网膜病变 | RNA测序, 深度学习药物筛选, 体外血管生成实验, 体内动物模型 | 深度学习 | 基因表达数据, 药物分子数据 | 氧诱导视网膜病变动物模型 | BioNet | NA | FN1表达水平, VEGFR2磷酸化水平, 视网膜前簇状血管数量 | NA |
| 845 | 2025-10-05 |
Automated segmentation of soft X-ray tomography: Native cellular structure with submicron resolution at high-throughput for whole-cell quantitative imaging in yeast
2025-Oct-01, Molecular biology of the cell
IF:3.1Q3
DOI:10.1091/mbc.E24-10-0486
PMID:40875368
|
研究论文 | 开发基于深度学习的自动分割流程用于软X射线断层扫描数据的细胞结构分割 | 首次将深度学习自动分割应用于软X射线断层扫描,实现高通量全细胞定量成像分析 | 依赖手动迭代优化来提高分割精度 | 实现酵母细胞亚微米分辨率下的高通量全细胞定量成像分析 | 三种酵母菌株(野生型、VPH1-GFP和另一菌株)的细胞结构 | 计算机视觉 | NA | 软X射线断层扫描(SXT) | 深度学习 | 三维断层扫描图像 | 数百个细胞,涵盖三种酵母菌株 | NA | NA | 分割精度 | NA |
| 846 | 2025-10-05 |
Dual-feature cross-fusion network for precise brain tumor classification: a neurocomputational approach
2025-Oct-01, The International journal of neuroscience
DOI:10.1080/00207454.2025.2565445
PMID:40986620
|
研究论文 | 提出一种双特征交叉融合网络(DF-CFN),用于脑肿瘤MRI图像的自动分类 | 结合ConvNeXt提取全局特征与浅层CNN+FcaNet提取局部特征,通过交叉融合机制提升分类性能 | NA | 开发自动脑肿瘤分类方法以辅助临床诊断 | 脑肿瘤MRI图像 | 计算机视觉 | 脑肿瘤 | 磁共振成像(MRI) | CNN | 图像 | Kaggle数据集(四类肿瘤:胶质瘤、脑膜瘤、垂体瘤和非肿瘤)和FigShare数据集 | NA | ConvNeXt,FcaNet,双特征交叉融合网络 | 准确率 | NA |
| 847 | 2025-10-05 |
3D human pose point cloud data of light detection and ranging (LiDAR)
2025-Oct, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.112043
PMID:41018860
|
研究论文 | 本文介绍了使用3D LiDAR传感器采集的用于人体姿态预测的点云数据集 | 利用3D LiDAR技术采集人体姿态点云数据,该方法不捕获面部图像,更保护个人隐私 | 当前数据采集仅使用一名30-40岁男性受试者,未来需要扩展更多样本人群 | 开发用于人体姿态预测的3D点云数据集 | 人体姿态点云数据 | 计算机视觉 | NA | 3D LiDAR传感技术 | CNN | 3D点云数据 | 1400个3D点云数据,包含4种人体姿态类别,每类280个训练数据和280个测试数据 | NA | NA | NA | NA |
| 848 | 2025-10-05 |
Relational Graph Convolutional Network for Robust Mass Spectrum Classification
2025-Oct-01, Journal of the American Society for Mass Spectrometry
IF:3.1Q1
DOI:10.1021/jasms.5c00055
PMID:40888691
|
研究论文 | 提出一种基于关系图卷积网络的新型深度学习架构,用于高分辨率质谱成像中的稳健质谱分类 | 首次在MSI分类中利用质量缺陷和已知质量差异等HRMS结构特征,将质谱表示为图结构以学习化学相关离子家族间的关联 | 未明确说明模型在特定类型质谱数据上的泛化能力限制 | 开发能够充分利用高分辨率质谱特征并具有鲁棒性的质谱分类方法 | 质谱成像数据中的质谱信号 | 机器学习 | NA | 高分辨率质谱成像 | R-GCN, 深度学习 | 质谱数据 | 多个不同的MSI数据集 | NA | 关系图卷积网络 | 鲁棒性评估(针对质量偏移、离子丢失等信号变化) | NA |
| 849 | 2025-10-05 |
Bioinformatics and machine learning reveal novel prognostic biomarkers in head and neck squamous cell carcinoma
2025-Oct-01, Journal of applied genetics
IF:2.0Q3
DOI:10.1007/s13353-025-01018-7
PMID:41028529
|
研究论文 | 通过生物信息学和机器学习方法识别头颈部鳞状细胞癌的新型预后生物标志物 | 结合深度学习和生物信息学分析鉴定出KRT33B、KRTAP3-3、C14orf34和ACADM等新型诊断和预后生物标志物,并发现ACADM、KRT33B和C14orf34组合具有最佳诊断性能 | NA | 寻找头颈部鳞状细胞癌的诊断和预后生物标志物以提高患者生存率 | 头颈部鳞状细胞癌患者 | 机器学习 | 头颈部鳞状细胞癌 | RNA表达数据分析 | 深度学习 | 基因表达数据 | NA | NA | NA | 灵敏度, 特异性, AUC | NA |
| 850 | 2025-10-05 |
Modeling Enzyme Temperature Stability from Sequence Segment Perspective
2025-Oct-01, Journal of chemical information and modeling
IF:5.6Q1
DOI:10.1021/acs.jcim.5c01674
PMID:41031662
|
研究论文 | 本文提出了一种从序列片段角度预测酶温度稳定性的深度学习框架 | 引入基于蛋白质序列片段表示的新方法,考虑不同区域对热稳定性的差异贡献 | 数据可用性有限且分布不平衡可能影响模型性能 | 开发能够准确预测酶温度稳定性的计算方法 | 酶蛋白质序列及其温度稳定性 | 机器学习 | NA | 深度学习 | Transformer | 蛋白质序列数据 | NA | NA | Segment Transformer | RMSE, MAE, Pearson correlation, Spearman correlation | NA |
| 851 | 2025-10-05 |
Choroidal Vascular Fingerprints From Indocyanine Green Angiography Unveil Chorioretinal Disease State
2025-Oct-01, Investigative ophthalmology & visual science
IF:5.0Q1
DOI:10.1167/iovs.66.13.3
PMID:41031739
|
研究论文 | 开发基于人机协同策略的深度学习算法,从吲哚菁绿血管造影图像中提取脉络膜血管多维特征,并探索其与多种脉络膜视网膜疾病的关联 | 首次提出脉络膜血管指纹概念,采用人机协同策略实现标注高效的深度学习算法,可量化血管直径、密度、复杂度、迂曲度和分支角度等多维特征 | 回顾性研究设计,样本量相对有限(394只眼),未包含所有类型的脉络膜视网膜疾病 | 开发标注高效的深度学习算法,探索脉络膜血管特征与脉络膜视网膜疾病的关联 | 中心性浆液性脉络膜视网膜病变、息肉样脉络膜血管病变、病理性近视患者及正常对照者的眼底图像 | 数字病理 | 脉络膜视网膜疾病 | 吲哚菁绿血管造影 | 深度学习分割模型 | 图像 | 394只眼(243只患者眼,151只正常对照眼) | NA | NA | AUC, ICC | NA |
| 852 | 2025-10-05 |
Deep Learning for Automatic Segmentation of Pituitary Adenomas: A Videomics Study
2025-Oct-01, Operative neurosurgery (Hagerstown, Md.)
DOI:10.1227/ons.0000000000001781
PMID:41031839
|
研究论文 | 本研究评估了三种深度学习模型在垂体腺瘤自动分割中的性能,发现Swin Transformer模型在肿瘤边界描绘方面表现最优 | 首次将视频内镜与人工智能结合的videomics技术应用于垂体腺瘤的实时手术分割,并比较了Swin Transformer、YOLO和Mask R-CNN三种先进模型 | 回顾性研究,样本量相对有限(700帧图像),仅基于单一医疗机构数据 | 评估不同深度学习模型在垂体腺瘤自动分割中的性能,提高手术中肿瘤边界描绘的准确性 | 接受内镜经鼻手术的垂体腺瘤患者 | 计算机视觉 | 垂体腺瘤 | 视频内镜技术 | Swin Transformer, YOLO, Mask R-CNN | 视频帧图像 | 700帧代表性图像,来自20个手术视频(14个训练,3个验证,3个测试) | NA | Swin Transformer, YOLOv8x, Mask R-CNN | mAP, Dice相似系数, 召回率, 精确率 | NA |
| 853 | 2025-10-05 |
A deep learning-enabled toolkit for the 3D segmentation of ventricular cardiomyocytes
2025-Oct-01, The Journal of physiology
DOI:10.1113/JP288557
PMID:41031902
|
研究论文 | 开发了一种基于深度学习的工具包,用于心室心肌细胞的三维分割 | 首次将深度学习方法应用于高分辨率3D心肌细胞分割,并提供包含多物种、多实验条件的开源数据集和工具包 | 未明确说明模型在极端病理条件下的性能表现 | 开发可靠的心肌细胞3D分割方法以研究心脏生理和病理机制 | 心室心肌细胞 | 数字病理 | 心血管疾病 | 共聚焦显微镜 | 深度学习 | 3D图像 | 73个体积数据,涵盖7个物种(包括小鼠、人类和大象) | NA | NA | 适应Rand误差, 体素对一致性 | NA |
| 854 | 2025-10-05 |
YOLOv8-DuckPluck: A lightweight target detection model for cherry valley duck feather pecking site detection
2025-Oct, Poultry science
IF:3.8Q1
DOI:10.1016/j.psj.2025.105484
PMID:40618564
|
研究论文 | 提出一种基于YOLOv8的樱桃谷鸭啄羽部位检测轻量级模型YOLOv8-DuckPluck | 提出新型轻量级多尺度特征提取模块NeoMSM-C2f,采用DyHead检测头动态调整检测策略,并应用知识蒸馏技术提升检测精度 | NA | 解决高密度多目标复杂环境下目标检测模型处理速度慢、参数量大和模型体积大的问题 | 樱桃谷鸭的啄羽行为检测 | 计算机视觉 | NA | 深度学习 | YOLO, CNN | 图像 | NA | NA | YOLOv8, NeoMSM-C2f, DyHead | mAP, 检测速度(f/s) | NA |
| 855 | 2025-10-05 |
Assessing the impact of day and night urban outdoor environments on women's physiological and psychological states using pedestrian-centric street view images
2025-Oct, Social science & medicine (1982)
DOI:10.1016/j.socscimed.2025.118433
PMID:40743851
|
研究论文 | 通过街景图像和多学科方法评估城市昼夜环境对女性生理心理状态的影响 | 首次结合行人视角街景图像和时空分析方法研究昼夜环境变化对女性生理心理的差异化影响 | 研究范围限于特定城市环境,未考虑个体差异和文化背景等因素 | 探究不同城市环境昼夜变化对女性生理心理状态的影响机制 | 城市户外环境中的女性行人 | 计算机视觉 | NA | 街景图像采集、深度学习分析 | 深度学习模型 | 街景图像、问卷数据、生理测量数据 | 未明确说明具体样本数量 | NA | NA | 空间自相关分析、MGWR回归分析 | NA |
| 856 | 2025-10-05 |
The interembodiment of healing: Holistic transformations in neurological rehabilitation and care
2025-Oct, Social science & medicine (1982)
DOI:10.1016/j.socscimed.2025.118468
PMID:40768952
|
研究论文 | 通过民族志研究探讨神经康复中患者与治疗师之间的跨身体互动对康复过程的影响 | 提出'跨身体性'概念,强调康复过程中情感、信息与身体学习的多维整合,挑战将瘫痪视为个体状况的传统观点 | 基于10个月民族志研究,样本范围有限,未涉及量化验证 | 探索神经康复过程中患者与治疗师之间的互动机制及其对康复效果的影响 | 瘫痪患者(脊髓损伤和创伤性脑损伤)、护理人员及康复专业人员 | 医学人类学 | 神经系统疾病 | 民族志研究、案例研究 | NA | 定性数据、观察记录、案例资料 | 10个月田野调查涉及的患者、护理人员和康复专业人员群体 | NA | NA | NA | NA |
| 857 | 2025-10-05 |
Fusing Echocardiography Images and Medical Records for Continuous Patient Stratification
2025-Oct, IEEE transactions on ultrasonics, ferroelectrics, and frequency control
DOI:10.1109/TUFFC.2025.3600902
PMID:40833913
|
研究论文 | 提出融合超声心动图图像和医疗记录的方法,用于高血压患者的连续分层 | 首次将Transformer模型应用于表格数据,融合多模态医疗数据学习心血管疾病的连续表征 | 训练样本有限(少于200个训练样本),仅针对高血压患者进行研究 | 开发能够综合考虑医疗记录和超声心动图描述符的患者分层方法 | 239名高血压患者 | 医疗人工智能 | 心血管疾病 | 超声心动图,医疗记录分析 | Transformer | 图像,表格数据 | 239名高血压患者 | NA | XTab基础模型,Transformer编码器 | AUROC,平均绝对误差(MAE) | NA |
| 858 | 2025-10-05 |
A Guided Refinement Network Model With Joint Denoising and Segmentation for Low-Dose Coronary CTA Subtle Structure Enhancement
2025-Oct, IEEE transactions on bio-medical engineering
DOI:10.1109/TBME.2025.3561338
PMID:40293900
|
研究论文 | 提出一种基于联合学习的引导精炼网络模型,用于从低剂量冠状动脉CTA中恢复高质量图像 | 将冠状动脉分割整合到去噪过程中,通过相互引导实现有效交互和协同优化 | 未明确说明样本数据的具体来源和多样性限制 | 提升低剂量冠状动脉CTA成像质量,同时实现噪声抑制和细微结构增强 | 低剂量冠状动脉CT血管造影图像 | 计算机视觉 | 心血管疾病 | CT血管造影 | 深度学习网络 | 医学图像 | NA | NA | 引导精炼网络 | 噪声抑制、细微结构恢复、视觉感知改善 | NA |
| 859 | 2025-10-05 |
Quantitative radiomic analysis of computed tomography scans using machine and deep learning techniques accurately predicts histological subtypes of non-small cell lung cancer: A retrospective analysis
2025-Oct, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
DOI:10.1016/j.ejso.2025.110376
PMID:40803192
|
研究论文 | 本研究通过机器学习和深度学习技术对CT扫描进行定量影像组学分析,准确预测非小细胞肺癌的组织学亚型 | 首次系统比较多种机器学习模型和深度神经网络在基于CT影像组学特征预测NSCLC组织学亚型中的性能 | 回顾性研究设计,样本量相对有限(422例),缺乏外部验证 | 开发基于CT影像组学特征的机器学习模型来预测非小细胞肺癌的组织学亚型 | 非小细胞肺癌患者的肺部CT扫描图像 | 医学影像分析 | 肺癌 | CT影像组学分析 | 机器学习模型, 深度神经网络 | 医学影像 | 422例肺部CT扫描 | PyRadiomics, 多种机器学习框架 | 逻辑回归, 支持向量机, 随机森林, XGBoost, LightGBM, CatBoost, 深度神经网络 | 准确率, AUC-ROC | NA |
| 860 | 2025-10-05 |
VNWoodKnot: A benchmark image dataset for wood knot detection and classification
2025-Oct, Data in brief
IF:1.0Q3
DOI:10.1016/j.dib.2025.112039
PMID:41018861
|
研究论文 | 本文介绍了用于木材节疤检测和分类的基准图像数据集VNWoodKnot | 填补了木材缺陷检测领域公开数据集的空白,提供了包含三种节疤类别的高分辨率图像数据集 | NA | 开发用于工业级木材缺陷检测的实时、可扩展且可靠的深度学习模型 | 木材表面节疤缺陷 | 计算机视觉 | NA | 图像采集 | 深度学习 | 图像 | 1,515张高分辨率木材表面图像(活节519张、死节496张、无节疤500张) | NA | NA | NA | NA |