本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 901 | 2025-11-24 |
Clinically oriented deep learning framework for automated vessel wall segmentation in black-blood MRI: a multi-center study
2025-Nov-22, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-12161-4
PMID:41273425
|
研究论文 | 开发并验证用于黑血磁共振血管壁成像中颅内和颈动脉血管壁自动分割的临床适用深度学习框架 | 提出三项关键创新:极坐标映射、特征共享填充策略和极坐标Dice损失函数 | 回顾性研究设计,样本量相对有限(193例患者) | 开发临床适用的血管壁自动分割方法以支持脑血管风险评估 | 颅内和颈动脉血管壁 | 医学影像分析 | 脑血管疾病 | 黑血磁共振血管壁成像 | 深度学习分割框架 | 磁共振影像 | 193例来自五家医院的患者,平均年龄60.2±4.3岁 | NA | NA | Dice相似系数, Hausdorff距离, 面积差异 | NA |
| 902 | 2025-11-24 |
AI-Driven Discovery and Design of Antimicrobial Peptides: Progress, Challenges, and Opportunities
2025-Nov-22, Probiotics and antimicrobial proteins
IF:4.4Q2
DOI:10.1007/s12602-025-10856-0
PMID:41273666
|
综述 | 系统总结人工智能技术在抗菌肽发现与设计领域的最新进展、挑战和未来机遇 | 首次系统梳理AI技术在抗菌肽研究中从判别模型到生成模型的全流程应用,并提出多模态优化等创新设计策略 | 面临数据质量限制、模型可解释性不足和实验验证瓶颈等挑战 | 加速基于抗菌肽的药物研发进程 | 抗菌肽(AMPs) | 机器学习 | 抗菌耐药性感染疾病 | 机器学习(ML)、深度学习(DL) | 判别模型、回归模型、生成模型 | 多模态生物数据 | NA | NA | NA | NA | NA |
| 903 | 2025-11-24 |
Deep learning-based approach for differential diagnosis of odontogenic cysts from histopathological images
2025-Nov-22, Medicina oral, patologia oral y cirugia bucal
DOI:10.4317/medoral.27697
PMID:41273753
|
研究论文 | 本研究开发基于深度学习的AI方法,利用组织病理学图像对不同类型的牙源性囊肿进行鉴别诊断 | 首次将多种深度学习架构应用于牙源性囊肿的自动鉴别诊断,比较了不同模型在牙科病理图像上的性能表现 | 数据集规模相对较小,仅包含348张图像;Xception和Inception V3模型收敛速度较慢,训练效率有待提升 | 开发基于深度学习的牙源性囊肿自动诊断系统 | 三种牙源性囊肿:含牙囊肿(87例)、根尖囊肿(198例)、牙源性角化囊肿(63例) | 数字病理学 | 牙源性囊肿 | 苏木精-伊红(H&E)染色 | CNN | 图像 | 348张组织病理学图像(87张含牙囊肿,198张根尖囊肿,63张牙源性角化囊肿) | NA | Inception V3,VGG16,VGG19,Xception,经典CNN | 准确率,精确率,灵敏度(召回率),F1分数 | NA |
| 904 | 2025-11-24 |
Deep Learning-Assisted Differentiation of Four Peripheral Neuropathies Using Corneal Confocal Microscopy
2025-Nov-22, Annals of clinical and translational neurology
IF:4.4Q1
DOI:10.1002/acn3.70255
PMID:41274779
|
研究论文 | 开发基于深度学习的外周神经病变自动诊断系统NeuropathAI,通过角膜共聚焦显微镜图像区分四种外周神经病变 | 首次开发可解释的多类别深度学习系统,用于快速自动诊断和区分四种常见外周神经病变 | 样本量相对较小(88名患者),需更大规模验证 | 解决外周神经病变诊断延迟和漏诊问题,开发快速自动化诊断方法 | 88名患有四种外周神经病变的患者:糖尿病外周神经病变、化疗诱导外周神经病变、慢性炎性脱髓鞘性多发性神经病、HIV相关感觉神经病变 | 数字病理学 | 外周神经病变 | 角膜共聚焦显微镜 | 深度学习 | 图像 | 88名患者 | NA | NA | 准确率,F1分数,AUC,敏感性,特异性,精确度 | NA |
| 905 | 2025-11-24 |
AI-driven multi-omics integration in precision oncology: bridging the data deluge to clinical decisions
2025-Nov-21, Clinical and experimental medicine
IF:3.2Q2
DOI:10.1007/s10238-025-01965-9
PMID:41266662
|
综述 | 探讨人工智能如何整合多组学数据推动精准肿瘤学从群体化治疗向个体化医疗转型 | 系统阐述AI技术在多组学整合中的创新应用,包括图神经网络建模生物网络、Transformer实现跨模态融合、可解释AI提供临床决策透明度 | 模型泛化能力不足、伦理公平性挑战、监管标准尚未统一 | 通过AI驱动的多组学整合提升肿瘤精准医疗水平 | 多组学数据(基因组学、转录组学、蛋白质组学、代谢组学、影像组学) | 机器学习 | 癌症 | 多组学整合分析 | 深度学习, 机器学习, 图神经网络, Transformer | 多组学数据 | NA | NA | 图神经网络, Transformer | AUC | 量子计算, 联邦学习 |
| 906 | 2025-11-24 |
Pixel-level detection and classification of marine oil spills in aerial imagery with annotation uncertainty handling
2025-Nov-21, Marine pollution bulletin
IF:5.3Q1
DOI:10.1016/j.marpolbul.2025.118975
PMID:41273820
|
研究论文 | 本研究提出了一种基于深度学习的框架,用于在航空图像中进行像素级海洋溢油检测和分类,并处理标注不确定性 | 开发了两个互补的像素级标注RGB图像数据集,并利用U-Net架构进行语义分割,同时通过消融研究优化了网络骨干、预训练、数据增强和视觉模糊区域处理,以提升性能和泛化能力 | 未明确说明模型在极端天气或低光照条件下的性能,以及数据集可能存在的标注偏差未详细讨论 | 开发快速准确的自动溢油检测和分类方法,以支持环境缓解工作 | 海洋溢油,基于外观特征(如银色、彩虹色、乳化状)分类不同油类 | 计算机视觉 | NA | 航空影像采集 | CNN | RGB图像 | 两个互补的像素级标注数据集(真实监测数据和在线来源数据) | NA | U-Net | mIoU, 准确率 | NA |
| 907 | 2025-11-24 |
Role of artificial intelligence in medical image analysis
2025-Nov-20, Chinese medical journal
IF:7.5Q1
DOI:10.1097/CM9.0000000000003824
PMID:41131954
|
综述 | 概述人工智能在医学影像分析领域的最新进展、方法特点及未来趋势 | 系统梳理了基于卷积神经网络和大型语言模型的AI技术在医学影像分析中的新兴应用与发展轨迹 | 缺乏对AI技术解决关键临床挑战性能的深入分析 | 探讨人工智能在医学影像分析中的作用与发展趋势 | 医学影像分析技术 | 计算机视觉 | NA | 深度学习 | CNN, LLM | 医学影像 | NA | NA | 卷积神经网络, 大型语言模型 | NA | NA |
| 908 | 2025-11-24 |
Deep learning and whole-brain networks for biomarker discovery: modeling the dynamics of brain fluctuations in resting-state and cognitive tasks
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24702-4
PMID:41266387
|
研究论文 | 本研究利用深度学习模型从全脑网络模型中预测分岔参数,并评估其作为区分静息态和任务态脑状态的生物标志物的有效性 | 首次将全脑网络模型的分岔参数作为生物标志物,结合深度学习进行脑状态区分 | 仅使用合成BOLD信号进行训练,真实数据验证有限 | 探索分岔参数作为脑状态特征生物标志物的潜力 | 人脑连接组项目中的静息态和任务态脑功能数据 | 计算神经科学 | 神经系统疾病 | BOLD信号分析,脑网络建模 | 深度学习,机器学习 | fMRI数据,合成BOLD信号 | 人脑连接组项目数据,包含静息态和任务态条件 | NA | 超临界Hopf脑网络模型 | 分类准确率 | NA |
| 909 | 2025-11-24 |
Real time road scene classification and enhancement for driver assistance under adverse weather
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-23171-z
PMID:41266398
|
研究论文 | 提出一种基于机器学习的实时道路场景分类与图像增强系统,用于恶劣天气下的驾驶辅助 | 在低成本硬件(Raspberry Pi 5)上实现高精度道路场景分类,并针对不同场景应用特定图像增强技术 | 在有限硬件上运行,可能无法处理更复杂的深度学习增强技术 | 开发适用于恶劣天气条件的驾驶辅助视觉系统 | 道路场景图像(白天、夜晚、雾天、雨天) | 计算机视觉 | NA | 图像增强技术 | Random Committee, CNN, YOLO | 图像 | NA | NA | ResNet-101, CNN, YOLO | 准确率 | Raspberry Pi 5, USB摄像头, 7英寸显示器 |
| 910 | 2025-11-24 |
A lightweight improved YOLOv8 method for intelligent detection of pine wilt disease
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24854-3
PMID:41266447
|
研究论文 | 提出一种基于改进YOLOv8的轻量级智能检测方法PWD-YOLO-D,用于无人机遥感图像中的松材线虫病检测 | 集成高效多尺度交叉注意力机制增强多尺度特征表示,采用自集成注意力模块作为检测头提升遮挡和重叠树冠识别鲁棒性,使用Focaler-IoU损失函数优化定位精度 | NA | 开发高效精准的松材线虫病智能检测方法以支持及时防控 | 松材线虫病感染的松树 | 计算机视觉 | 植物病害 | 无人机遥感成像 | YOLO | 图像 | NA | YOLOv8 | PWD-YOLO-D(基于YOLOv8改进) | AP@0.5, AP@0.5:0.95, 参数量 | NA |
| 911 | 2025-11-24 |
Deep learning using inductively coupled plasma spectroscopy spectra accurately predicts various soil physicochemical properties for soil diagnosis
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24274-3
PMID:41266475
|
研究论文 | 本研究利用电感耦合等离子体光谱数据结合深度学习准确预测多种土壤理化性质 | 首次证明使用土壤提取物的ICP光谱数据可同时预测多种土壤参数 | 仅使用1941个土壤样本,样本来源和多样性可能有限 | 开发快速、精确且经济实惠的土壤诊断方法 | 来自7个国家的1941个土壤样本,涵盖不同土地利用模式和历史的土壤 | 机器学习 | NA | 电感耦合等离子体光谱法 | 深度学习 | 光谱数据 | 1941个土壤样本 | NA | NA | 决定系数 | NA |
| 912 | 2025-11-24 |
Automated tumor stroma ratio assessment in colorectal cancer using hybrid deep learning approach
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24229-8
PMID:41266465
|
研究论文 | 本研究提出一种混合深度学习框架,用于结直肠癌中肿瘤-间质比率的自动化评估 | 首次将Transformer机制与CNN结合用于TSR评估,通过混合CNN-Transformer UNET模型增强空间上下文理解 | 未明确说明样本来源的多样性和模型在外部验证集上的泛化能力 | 开发自动化、客观的肿瘤-间质比率评估方法以改善结直肠癌预后评估 | 结直肠癌全切片图像中的肿瘤和间质区域 | 数字病理学 | 结直肠癌 | 全切片图像分析 | CNN, Transformer | 图像 | NA | NA | Efficient-TransUNet, UNET | 准确率, 精确率, 召回率, F1分数, 马修斯相关系数, 聚合Dice系数 | NA |
| 913 | 2025-11-24 |
Research on coal and gas outburst risk prediction based on improved search algorithm optimized deep learning network
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24744-8
PMID:41266491
|
研究论文 | 基于改进搜索算法优化深度学习网络的煤与瓦斯突出风险预测研究 | 提出混沌映射和Levy飞行改进乌鸦搜索算法(ICSA)来优化CNN超参数,建立ICSA-CNN预测模型 | NA | 预测煤与瓦斯突出风险,提高煤矿安全生产水平 | 煤矿开采过程中的煤与瓦斯突出灾害 | 机器学习 | NA | 箱线图、数据插值法、相关性分析 | CNN | 煤矿安全监测数据 | NA | NA | CNN | 准确率、混淆矩阵 | NA |
| 914 | 2025-11-24 |
Natural language processing techniques to detect delirium in hospitalized patients from clinical notes: a systematic review
2025-Nov-20, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-02051-w
PMID:41266514
|
系统综述 | 系统综述自然语言处理技术在临床文本中检测住院患者谵妄的应用 | 首次系统评估NLP技术在谵妄检测中的应用效果,特别指出基于Transformer的模型达到最高性能(AUROC 0.984) | 61.5%的研究存在高偏倚风险,仅一项研究进行外部验证,缺乏前瞻性实施和患者结局评估,所有研究均未考虑公平性、缺失数据处理和实施指导 | 评估自然语言处理技术在临床文本中自动检测谵妄的应用效果和方法 | 住院患者临床文本数据 | 自然语言处理 | 老年疾病 | 自然语言处理 | 规则方法,机器学习,深度学习,主题建模,半监督学习 | 临床文本 | 超过450,000名患者 | NA | Transformer | 敏感度,AUROC | NA |
| 915 | 2025-11-24 |
Fetal gestational age estimation using artificial intelligence on non-targeted ultrasound images and video
2025-Nov-20, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-02024-z
PMID:41266569
|
研究论文 | 开发了一种基于深度学习的胎儿孕周估计模型,可从任意方向的超声图像直接估计孕周 | 首次使用非定向超声图像和视频进行胎儿孕周估计,无需特定图像方向,并输出不确定性评估 | NA | 开发一种不依赖专业技能的人工智能胎儿孕周估计方法 | 胎儿超声图像和视频 | 医学影像分析 | 产科疾病 | 超声成像 | 深度学习 | 图像, 视频 | 78,531例妊娠的200多万张超声图像,验证集包含742个胎儿的36,762张图像 | NA | NA | 平均绝对误差, p值 | NA |
| 916 | 2025-11-24 |
ROFI: a deep learning-based ophthalmic sign-preserving and reversible patient face anonymizer
2025-Nov-20, NPJ digital medicine
IF:12.4Q1
DOI:10.1038/s41746-025-02062-7
PMID:41266592
|
研究论文 | 开发基于深度学习的眼科患者面部匿名化框架ROFI,在保护隐私的同时保留疾病特征 | 使用弱监督学习和神经身份转换技术,实现面部特征匿名化同时保留眼科疾病特征,并支持安全的图像还原功能 | NA | 开发眼科患者面部图像的隐私保护方法 | 眼科患者面部图像 | 计算机视觉 | 眼科疾病 | 深度学习 | 神经网络 | 图像 | 三个队列的十一类眼科疾病图像,超过95%的图像被匿名化 | NA | NA | 准确率, κ系数, 诊断灵敏度, 相似度 | NA |
| 917 | 2025-11-24 |
The application of channel attention mechanism for fusion of painting and live-action footage under deep learning and animation generation technology
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24855-2
PMID:41266622
|
研究论文 | 提出基于通道注意力机制的深度学习模型,用于解决绘画与实拍影像在动画生成中的跨模态融合问题 | 采用双路径特征融合框架和动态权重分配策略,通过通道注意力机制实现跨模态特征的自适应增强 | NA | 提升绘画与实拍影像在动画生成中的跨模态融合效果 | 绘画与实拍影像的多模态数据 | 计算机视觉 | NA | 深度学习 | CNN, Transformer | 图像, 视频 | NA | NA | ResNet-50, Transformer | 峰值信噪比, 结构相似性指数, Fréchet Inception距离, 多模态融合度, 跨模态特征动态耦合指数 | NA |
| 918 | 2025-11-24 |
Secure blockchain integrated deep learning framework for federated risk-adaptive and privacy-preserving IoT edge intelligence sets
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24895-8
PMID:41266631
|
研究论文 | 提出一种集成区块链与深度学习的联邦风险自适应隐私保护物联网边缘智能框架 | 结合区块链透明性与深度学习灵活性的混合架构,引入五大创新组件实现风险优先级训练、可验证隐私保护推理、对抗攻击模拟、轻量级共识和模型溯源 | 未提及具体实验验证规模与实际部署场景的局限性 | 解决物联网边缘计算中安全性与资源约束的平衡问题 | 物联网边缘节点设备 | 机器学习 | NA | 区块链技术, 深度学习 | 深度学习模型 | 区块链日志, 威胁指标, 节点数据 | NA | NA | NA | 训练延迟, 同步能耗, 隐私泄露指标 | 物联网边缘计算环境 |
| 919 | 2025-11-24 |
DCS-NET: a multi-task model for uterine ROI detection and automatic staging of early endometrial cancer in MRI
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-25004-5
PMID:41266696
|
研究论文 | 提出DCS-Net多任务深度学习框架,用于MRI中子宫内膜癌早期阶段的自动检测和分期 | 结合先进目标检测模块精确定位子宫区域,采用区域聚焦方法将分期准确率提升5% | 未整合多参数MRI数据,临床适用范围有限 | 开发自动化子宫内膜癌MRI检测和分期系统 | 早期子宫内膜癌患者的盆腔MRI图像 | 数字病理 | 子宫内膜癌 | 磁共振成像 | CNN | 医学影像 | NA | NA | DCS-Net | 准确率 | NA |
| 920 | 2025-11-24 |
Optimized multi scale graph neural network with attention mechanism for cooperative spectrum sensing in cognitive radio networks
2025-Nov-20, Scientific reports
IF:3.8Q1
DOI:10.1038/s41598-025-24947-z
PMID:41266733
|
研究论文 | 提出一种用于认知无线电网络协作频谱感知的优化多尺度图神经网络模型 | 结合多尺度图神经网络与注意力机制,并采用自适应蝴蝶优化算法进行参数调优 | 仅使用单一数据集进行验证,未在实际网络环境中测试 | 提高认知无线电网络在低信噪比条件下的频谱检测可靠性 | 认知无线电网络的协作频谱感知 | 机器学习 | NA | 频谱感知技术 | 图神经网络,注意力机制 | I/Q信号样本 | RadioML2016.10b数据集,包含11种调制方案在-20dB至18dB信噪比范围内的样本 | NA | 多尺度图神经网络 | 准确率,精确率,召回率,F1分数 | NA |