本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1641 | 2025-11-07 |
Deep learning-based synthetic-CT-free photon dose calculation in MR-guided radiotherapy: A proof-of-concept study
2025-Nov, Medical physics
IF:3.2Q1
DOI:10.1002/mp.70106
PMID:41186921
|
研究论文 | 本研究提出了一种基于深度学习的无合成CT磁共振引导放疗光子剂量计算方法 | 首次直接在0.35T MRI上进行光子剂量计算,跳过了传统合成CT生成步骤 | 研究仅针对前列腺癌病例,样本量较小(34例患者) | 开发适用于MRI引导在线自适应放疗的实时剂量计算方法 | 前列腺癌患者 | 医学影像分析 | 前列腺癌 | 磁共振成像,蒙特卡洛剂量模拟 | U-Net, LSTM | MRI图像,CT图像 | 34例前列腺癌患者(20例训练,4例验证,10例测试) | NA | U-Net, LSTM | gamma通过率,剂量剖面,剂量体积直方图 | NA |
| 1642 | 2025-11-07 |
Overview of Multimodal Radiomics and Deep Learning in the Prediction of Axillary Lymph Node Status in Breast Cancer
2025-Nov, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.07.017
PMID:40830005
|
综述 | 本文综述了多模态影像组学和深度学习在预测乳腺癌腋窝淋巴结状态中的应用与进展 | 系统整合了多模态影像(乳腺X线摄影、超声、MRI和PET/CT)与深度学习算法在乳腺癌淋巴结转移预测中的最新研究进展 | 存在方法学和技术挑战需要解决 | 评估影像组学和深度学习在乳腺癌腋窝淋巴结转移预测中的研究现状 | 乳腺癌患者的腋窝淋巴结状态 | 数字病理 | 乳腺癌 | 多模态影像(乳腺X线摄影、超声、MRI、PET/CT) | 深度学习 | 医学影像 | NA | NA | NA | NA | NA |
| 1643 | 2025-11-07 |
Deep Learning-Enhanced Opportunistic Osteoporosis Screening in 100 kV Low-Voltage Chest CT: A Novel Way Toward Bone Mineral Density Measurement and Radiation Dose Reduction
2025-Nov, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.07.060
PMID:40835570
|
研究论文 | 开发深度学习模型在100kV低剂量胸部CT中实现全自动椎体分割和骨密度测量 | 首次在100kV低剂量胸部CT中实现全自动椎体分割和骨密度计算的深度学习框架 | 研究样本量有限(1167例患者),需进一步扩大验证 | 探索深度学习在低剂量胸部CT中骨质疏松筛查的可行性和准确性 | 接受100kV低剂量胸部CT和120kV腰椎CT的1167例患者 | 医学影像分析 | 骨质疏松症 | CT扫描 | CNN | CT影像 | 1167例患者(训练集495例,验证集169例,三个测试集共503例) | NA | 3D VB-Net, SCN, DenseNet, ResNet | R2, 平均误差, AUC | NA |
| 1644 | 2025-11-07 |
Differentiation of Suspicious Microcalcifications Using Deep Learning: DCIS or IDC
2025-Nov, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.07.062
PMID:40835571
|
研究论文 | 本研究开发基于深度学习的模型用于区分乳腺X线摄影中可疑微钙化的导管原位癌和浸润性导管癌 | 首次结合深度学习特征与临床变量构建联合模型,在区分DCIS和IDC方面显著优于传统临床模型 | 回顾性研究,样本量相对有限(294例),仅来自两个中心 | 探索深度学习模型在区分表现为可疑微钙化的DCIS和IDC中的价值 | 乳腺X线摄影中表现为可疑微钙化的乳腺癌病例 | 数字病理 | 乳腺癌 | 乳腺X线摄影 | CNN | 医学影像 | 294例乳腺癌病例(106例DCIS,188例IDC) | NA | ResNet101 | AUC, 敏感度, 特异度, 准确率 | NA |
| 1645 | 2025-11-07 |
Application and development of infrared technology in gas detection
2025-Nov-01, The Review of scientific instruments
DOI:10.1063/5.0255190
PMID:41191477
|
综述 | 系统回顾红外气体检测技术的最新进展,包括检测方法比较、技术特征分析和算法发展演变 | 强调算法设计在检测精度与工程成本间的平衡作用,阐述数据驱动的深度学习方法如何通过自动提取多维特征克服传统物理方法的局限 | 检测精度与实时性能的权衡、气体特异性光谱波段增强困难、高质量数据集稀缺 | 红外气体检测技术的应用与发展研究 | 红外气体检测技术 | 红外成像技术 | NA | 红外成像技术、主动与被动气体成像方法、多组分检测系统、超灵敏痕量检测技术 | 深度学习 | 红外光谱数据、多维特征 | NA | NA | NA | 检测精度、实时性能 | NA |
| 1646 | 2025-11-07 |
Deep learning-based annotation of plant abiotic stress resistance genes for crops
2025-Nov, The Plant journal : for cell and molecular biology
DOI:10.1111/tpj.70556
PMID:41194493
|
研究论文 | 提出基于深度学习的植物非生物胁迫抗性基因注释方法PASRGA,并构建植物基因数据库PlantASRG | 结合迁移学习和对比学习技术开发基因注释模型,显著优于现有主流方法 | 未明确说明模型在跨物种泛化能力方面的限制 | 开发准确注释植物非生物胁迫抗性基因的深度学习工具 | 植物非生物胁迫(干旱、盐分、低温、紫外线)抗性基因 | 生物信息学 | NA | DNA测序 | 深度学习 | 基因组数据 | 17种主要作物基因组 | NA | NA | F1分数, AUROC, AUPRC, MCC | NA |
| 1647 | 2025-11-06 |
Carbon dots meet artificial intelligence: applications in biomedical engineering
2025-Nov-05, Journal of materials chemistry. B
DOI:10.1039/d5tb00593k
PMID:41065544
|
综述 | 本文全面综述了人工智能在碳点研究中的应用及其在生物医学工程中的潜力 | 首次系统探讨人工智能与碳点交叉领域,涵盖从材料设计到生物医学应用的完整链条 | NA | 探索人工智能技术在碳点材料研究及生物医学工程中的应用前景 | 碳点材料及其在生物医学工程中的应用 | 机器学习, 生物医学工程 | NA | 机器学习, 深度学习 | NA | 材料特性数据, 生物医学数据 | NA | NA | NA | NA | NA |
| 1648 | 2025-11-06 |
Genome-wide functional annotation and interpretation of splicing variants: toward RNA-targeted therapies
2025-Nov-05, Journal of human genetics
IF:2.6Q2
DOI:10.1038/s10038-025-01424-z
PMID:41188449
|
综述 | 系统阐述剪接破坏性变异的基因组功能注释与解释方法及其在RNA靶向治疗中的应用前景 | 整合非编码区变异注释策略,结合深度学习与基序导向工具,建立从变异识别到RNA靶向治疗的完整研究框架 | 依赖计算预测工具的准确性,实验验证策略仍需标准化,临床应用转化存在技术壁垒 | 开发系统性识别和解释剪接破坏性变异的策略,推动精准医疗发展 | 剪接破坏性变异(包括同义、深内含子和调控区变异) | 生物信息学 | 神经肌肉疾病及其他剪接驱动疾病 | 基因组测序,RNA靶向治疗技术(反义寡核苷酸、小分子调节剂、RNA编辑平台) | 深度学习模型,基序导向工具 | 基因组变异数据,剪接数据 | NA | NA | NA | NA | NA |
| 1649 | 2025-11-06 |
Letter to editor on "deep learning facilitated discovery of prognosis biomarkers and their ligands to improve liver cancer treatment"
2025-Nov-05, International journal of surgery (London, England)
DOI:10.1097/JS9.0000000000003656
PMID:41190371
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
| 1650 | 2025-11-06 |
Application of multi-scale feature extraction and explainable machine learning in chest x-ray position evaluation within an integrated learning framework
2025-Nov-05, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-12097-9
PMID:41191081
|
研究论文 | 本研究提出了一种结合深度学习和机器学习的融合网络,用于胸部X射线定位的定量和可解释评估 | 提出了基于分割的随机森林融合网络,结合SHAP方法增强模型临床可解释性 | 回顾性研究,数据来源于单一医疗机构 | 分析胸部X射线患者定位布局中的关键因素 | 胸部X射线图像 | 医学影像分析 | 胸部疾病 | X射线成像 | 深度学习, 机器学习 | 医学图像 | 3300张胸部X射线图像,来自中国医疗机构(2021年3月-2022年12月) | NA | U-net++, U-net, Random Forest Fusion Network | AUC, 准确率, 敏感性, 特异性, Dice系数 | NA |
| 1651 | 2025-11-06 |
Automated analysis of paraspinal muscles: segmentation and multi-parameter quantification in lumbar CT using convolutional neural network
2025-Nov-05, European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society
IF:2.6Q1
DOI:10.1007/s00586-025-09541-1
PMID:41191112
|
研究论文 | 开发基于卷积神经网络的深度学习算法,用于腰椎CT中八块椎旁肌的自动分割和多参数量化 | 首次在腰椎CT中实现八块椎旁肌的自动分割和多参数量化,克服了手动分割耗时且存在变异性的问题 | 样本量相对较小(100例腰椎CT扫描),需要进一步验证在更大样本和不同人群中的泛化能力 | 开发自动化的椎旁肌分割和量化方法,支持大规模椎旁肌和脊柱相关疾病的流行病学研究 | 腰椎椎旁肌(双侧腰大肌、腰方肌、竖脊肌和多裂肌) | 医学影像分析 | 脊柱相关疾病 | CT成像 | CNN | CT图像 | 100例腰椎CT扫描(年龄55.02±16.2岁,62例女性) | NA | TransUNet | Dice相似系数, Hausdorff距离, 平均交并比, 组内相关系数 | NA |
| 1652 | 2025-11-06 |
Unveiling Hearts: Deep Learning-Based Electrocardiogram Classification for Congenital Heart Disease Detection
2025-Nov-05, Current medical science
IF:2.0Q3
DOI:10.1007/s11596-025-00134-z
PMID:41191231
|
研究论文 | 本研究开发了一种基于深度学习的先天性心脏病心电图分类方法 | 结合CNN和RNN分析心电图信号,并应用SMOTE技术解决类别不平衡问题 | 需要在更多数据集上验证模型,并解决噪声处理和外部验证等现实挑战 | 开发准确分类先天性心脏病的深度学习方法 | 心电图信号 | 机器学习 | 先天性心脏病 | 心电图分析 | CNN,RNN | 时间序列数据 | MIT-BIH心律失常数据库 | NA | NA | 准确率 | NA |
| 1653 | 2025-11-06 |
Automatically Measuring Kidney, Liver, and Cyst Volumes in Autosomal Dominant Polycystic Kidney Disease
2025-Nov-04, Journal of the American Society of Nephrology : JASN
IF:10.3Q1
DOI:10.1681/ASN.0000000904
PMID:41186985
|
研究论文 | 开发基于深度学习的三维分割模型,用于自动测量常染色体显性多囊肾病患者的肾脏、肝脏和囊肿体积 | 提出结合U-Net和Transformer的3D混合模型,并开发了首个基于网络的自动体积测量平台 | 模型在肝脏囊肿分割性能相对较低(Dice分数0.82),且外部验证数据集规模有限 | 开发自动、准确的ADPKD肾脏、肝脏和囊肿体积测量工具 | 常染色体显性多囊肾病患者和健康对照者 | 数字病理学 | 常染色体显性多囊肾病 | MRI, CT扫描 | 3D混合模型 | 医学影像 | 720名参与者(611名ADPKD患者,109名对照) | NA | U-Net, Transformer | Dice系数, 平均绝对百分比差异 | 基于网络的平台 |
| 1654 | 2025-11-06 |
Structure-Preserving Two-Stage Diffusion Model for CBCT Metal Artifact Reduction
2025-Nov-04, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2025.3628764
PMID:41187053
|
研究论文 | 提出一种用于CBCT金属伪影减少的结构保持两阶段扩散模型 | 采用两阶段扩散框架,结合结构感知扩散模型和分割引导采样策略,强调结构保持和领域泛化能力 | 需要配对的口内扫描数据和CBCT图像进行监督训练 | 解决CBCT中金属植入物引起的伪影问题,提高诊断准确性 | 牙科CBCT图像中的金属伪影 | 计算机视觉 | 牙科疾病 | 锥束计算机断层扫描(CBCT), 口内扫描(IOS) | 扩散模型 | 医学图像 | 模拟数据和真实世界数据 | NA | 两阶段扩散框架 | 伪影减少效果, 结构保持能力 | NA |
| 1655 | 2025-11-06 |
Integration of deep learning and Bayesian networks for personalized tooth color prediction in dental esthetics: A study in Chinese Han population
2025-Nov-04, Journal of prosthodontics : official journal of the American College of Prosthodontists
DOI:10.1111/jopr.70049
PMID:41187324
|
研究论文 | 本研究开发了一种结合深度学习与贝叶斯网络的混合模型,用于预测中国汉族人群的个性化牙齿颜色偏好 | 首次将卷积神经网络与贝叶斯网络相结合用于牙齿颜色预测,显著提高了预测准确率 | 样本量相对较小(128名参与者),仅针对中国汉族人群进行研究 | 研究肤色、年龄和性别如何影响牙齿颜色偏好,为个性化牙齿美学提供量化指导 | 中国汉族人群(包括牙科专业人士和非专业人士)对标准化微笑图像的牙齿颜色偏好 | 计算机视觉 | NA | 牙齿颜色评估,VITA经典色标系统 | CNN, 贝叶斯网络 | 图像 | 128名参与者(62名男性,66名女性;60名牙科专业人士,68名非专业人士) | NA | 卷积神经网络与贝叶斯网络混合架构 | 准确率 | NA |
| 1656 | 2025-11-06 |
Impact of Deep Learning-Based Time-of-Flight PET Images of Small Tumors Using a Human Anatomic Phantom
2025-Nov-04, Journal of nuclear medicine technology
IF:1.0Q4
DOI:10.2967/jnmt.125.270450
PMID:41188046
|
研究论文 | 本研究使用人体解剖模型定量评估深度学习飞行时间技术对PET小肿瘤图像质量的影响 | 首次系统评估不同精度水平的深度学习飞行时间技术对PET图像中肿瘤可见度和对比度的定量影响 | 研究基于人体模型而非真实患者,临床验证样本有限 | 评估深度学习增强的飞行时间PET成像技术对小肿瘤检测性能的改善效果 | 模拟人体解剖结构的胸腹部模型中的肺部和肝脏肿瘤 | 医学影像分析 | 肿瘤疾病 | PET/CT成像, 飞行时间技术, 深度学习图像重建 | 深度学习模型 | PET医学影像 | 人体解剖模型,包含多个器官和肿瘤,在6个不同采集时间点进行扫描 | NA | 高精度深度学习模型(HDL) | SUVmax, 形状指数, 肿瘤可见度, 对比度 | BGO晶体PET/CT扫描仪 |
| 1657 | 2025-11-06 |
Applications and clinical translation of artificial intelligence in CBCT-based detection of endodontic lesions: a scoping review
2025-Nov-04, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-025-00876-5
PMID:41188594
|
综述 | 本范围综述探讨了人工智能在CBCT影像中检测牙髓根尖周病变的应用现状与临床转化前景 | 系统评估了AI在CBCT牙髓病变检测中的最新进展,包括商业软件Diagnocat和新型架构PALNet的应用 | 多数研究为回顾性设计,使用小型或同质化数据集,缺乏外部验证和标准金标准对照(如组织学关联) | 评估人工智能在CBCT影像中检测、分类和分割牙髓根尖周病变的应用效果与临床转化潜力 | 基于CBCT影像的牙髓根尖周病变 | 医学影像分析 | 牙髓根尖周病变 | CBCT成像 | CNN | 医学影像 | NA | NA | U-Net, DenseNet, PALNet | 敏感度, AUC | NA |
| 1658 | 2025-11-06 |
Performance Comparison Between Two Versions of a Commercial Artificial Intelligence System for Chest Radiograph Interpretation: A Multicenter Study
2025-Nov-04, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01731-z
PMID:41188640
|
研究论文 | 比较商业AI系统Gleamer ChestView两个版本在胸部X光片解读中的诊断性能 | 首次对同一AI系统的两个连续版本进行多中心性能比较验证 | 样本量相对有限(187例),部分病例依赖放射科医生共识而非CT金标准 | 评估AI系统版本升级对胸部X光片诊断性能的影响 | 胸部X光片中的多种胸部病变(胸腔积液、肺泡疾病、纵隔肿块、气胸、肺结节) | 医学影像分析 | 胸部疾病 | 深度学习 | 深度学习模型 | 胸部X光图像 | 187例胸部X光片,来自6个中心,4家设备制造商 | NA | NA | 灵敏度, 特异度, 精确度, F1分数 | NA |
| 1659 | 2025-11-06 |
Innovative Learning in Anatomy Education: Assessing the Impact of Low-Cost 3D Deep Learning Anatomical Models in Museum-Based Instruction
2025-Nov-03, Journal of surgical education
IF:2.6Q1
DOI:10.1016/j.jsurg.2025.103748
PMID:41187606
|
研究论文 | 评估低成本3D深度学习解剖模型在博物馆式教学中对医学生解剖学教育的有效性 | 采用基于PointNeXt深度学习框架的虚拟解剖博物馆平台,结合交互式3D模型提升解剖学教学的临床相关性和空间定位能力 | 样本量较小(40名学生),技术问题报告率25%,非实验性观察研究设计限制了因果推断 | 评估虚拟解剖博物馆方法在提升医学生临床推理和解剖学理解方面的效果 | 沙特阿拉伯哈利德国王大学应用医学科学学士课程的40名本科医学生 | 教育技术 | NA | 3D建模,深度学习 | 深度学习 | 3D解剖模型,问卷调查数据 | 40名本科医学生(目标组20人,对照组20人) | PointNeXt | PointNeXt, AnatoVision Block | 平均分,标准差,p值,百分比,5点李克特量表 | 基于网页的虚拟平台 |
| 1660 | 2025-11-06 |
Deep Learning Segmentation and Quantification of the Left Ventricle from the Parasternal Short-Axis View in Echocardiography
2025-Nov-03, Ultrasound in medicine & biology
|
研究论文 | 开发基于深度学习的超声心动图左心室自动分割与定量测量方法 | 首次使用nnU-Net模型实现超声心动图左心室腔和心肌的自动分割,并自动提取临床相关定量测量指标 | 研究样本量有限,仅验证了与两位人工观察者的一致性 | 开发自动化的超声心动图定量测量方法以减少测量变异性和时间消耗 | 超声心动图胸骨旁短轴切面图像中的左心室 | 计算机视觉 | 心血管疾病 | 超声心动图 | nnU-Net | 医学图像 | 未明确说明具体样本数量 | nnU-Net | nnU-Net | Dice系数, 95百分位Hausdorff距离, 受试者水平可行性 | NA |