深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202511-202511] [清除筛选条件]
当前共找到 1932 篇文献,本页显示第 1701 - 1720 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1701 2025-11-05
Decreased parietal epithelial cell density is linked to podocyte depletion and predictors of kidney disease progression in human kidneys
2025-Nov-01, American journal of physiology. Renal physiology
研究论文 开发深度学习方法来分析人类肾脏样本中壁层上皮细胞密度与肾小球疾病进展的关系 首次使用深度学习技术分析人类肾脏样本中壁层上皮细胞密度与肾小球疾病进展的关联 研究样本来自肾切除患者,可能不适用于所有慢性肾病患者群体 探究壁层上皮细胞在人类慢性肾小球疾病进展中的作用 肾切除样本中的肾小球壁层上皮细胞 数字病理学 慢性肾脏病 深度学习图像分析 深度学习 肾脏组织图像 超过14,000个肾小球 NA NA NA NA
1702 2025-11-05
Authentication of forged inked fingerprints utilizing silicone molds
2025-Nov, Journal of forensic sciences IF:1.5Q2
研究论文 本研究提出了一种结合拉曼光谱、形态学分析和深度学习的快速无损方法,用于检测伪造的油墨指纹 首次将特征金字塔网络(FPN)和多头自注意力机制(MHSA)集成到ResNet中,开发了ResNet50_AuI深度学习模型用于指纹认证 拉曼光谱单独使用无法区分真假指纹,各方法在实际应用中的局限性需要进一步验证 开发有效的伪造油墨指纹检测方法,提高司法环境中法医证据的可靠性 油墨指纹(包括真实和伪造样本) 计算机视觉 NA 拉曼光谱,形态学分析 CNN 图像 3600个油墨指纹 NA ResNet50, FPN, MHSA 准确率 NA
1703 2025-11-05
Self-supervised model-driven deep learning for two-step phase-shifting interferometry
2025-Nov-01, Optics letters IF:3.1Q2
研究论文 提出一种用于两步相移干涉术的自监督模型驱动深度学习方法 结合预训练归一化网络和未训练模型驱动网络,通过基于物理的模型驱动方法实现自监督学习,无需真实相位图作为训练标签 NA 提高相移干涉术的相位重建精度和鲁棒性 干涉图相位重建 机器学习和计算成像 NA 相移干涉术 深度学习网络 干涉图图像 NA NA PNNet(预训练归一化网络), UMNet(未训练模型驱动网络) 误差降低率 NA
1704 2025-11-05
Edge-Guided Deep Learning Model to Predict Fetal Brain Age Using MRI
2025 Nov-Dec, Journal of neuroimaging : official journal of the American Society of Neuroimaging IF:2.3Q2
研究论文 提出一种结合边缘信息的深度学习模型,用于从胎儿脑部MRI预测脑年龄 在深度学习模型中引入全局边缘信息,弥补了传统方法忽略局部边缘细节的不足 回顾性研究,样本来源单一,需进一步外部验证 提高胎儿脑年龄预测的准确性和可靠性 207例单胎妊娠的1630张胎儿脑部冠状T2加权MR图像 医学影像分析 胎儿发育评估 MRI 神经网络 医学图像 1630张胎儿脑部MR图像(来自207个受试者) NA 边缘引导深度学习模型 平均绝对误差(MAE), 决定系数(R2) NA
1705 2025-11-04
Manifold Embedding of Quantum Information as Molecule Representation to Predict Blood-Brain Barrier Permeability by Deep Learning
2025-Nov-03, Molecular pharmaceutics IF:4.5Q1
研究论文 本研究利用分子表面流形嵌入作为量子信息分子表示,通过深度学习模型预测血脑屏障渗透性 提出分子表面流形嵌入方法,将量子信息编码为分子表示,更直接地模拟分子相互作用 模型性能受数据规模和质量影响,在不同B3DB组间表现差异显著,log值分布不平衡,立体化学数据有限限制了手性影响的研究 改进中枢神经系统药物设计中血脑屏障渗透性的早期预测 分子化合物及其血脑屏障渗透性 机器学习 神经系统疾病 分子表面流形嵌入 深度学习 分子结构数据 B3DB数据集 NA NA RMSE, MAE, R² NA
1706 2025-11-04
Skin Lesion Classification Using Focal Modulation Networks
2025-Nov-03, Annals of the New York Academy of Sciences IF:4.1Q1
研究论文 提出基于焦点调制网络的皮肤病变分类框架,在三个公开数据集上实现高精度分类 首次将焦点调制网络应用于皮肤病变分类,能同时捕捉局部和全局特征,解决了传统Transformer模型处理高分辨率医学图像的局限性 未提及模型在临床环境中的实时性能测试和跨机构验证结果 开发准确、高效且可解释的自动皮肤病变分类方法 皮肤镜图像中的皮肤病变 计算机视觉 皮肤癌 深度学习 焦点调制网络 图像 三个公开数据集:ISIC 2017、ISIC 2018、ISIC 2019 NA 焦点调制网络(Tiny、Small、Base、Large四种变体) 准确率 NA
1707 2025-11-04
Progress and Bottlenecks for Deep Learning in Computational Structure Biology: CASP Round XVI
2025-Nov-03, Proteins IF:3.2Q2
研究论文 本文评估了CASP16中深度学习在计算结构生物学各领域的最新进展与瓶颈 系统评估了深度学习在蛋白质单体、复合物、RNA结构、大分子集合体和配体-蛋白质结构等不同领域的表现,并识别了当前的技术瓶颈 RNA结构预测结果不佳,大分子集合体目标集较小限制了结论,配体-蛋白质亲和力预测尚未达到实验精度 评估深度学习在计算结构生物学中的最新进展和现存挑战 蛋白质单体结构、蛋白质复合物、RNA结构、大分子集合体、有机配体-蛋白质结构和亲和力 计算结构生物学 NA 深度学习,传统物理启发方法 AlphaFold变体 蛋白质结构数据,RNA结构数据,配体-蛋白质复合物数据 CASP16目标集 NA AlphaFold 结构一致性,界面精度,实验准确性 NA
1708 2025-11-04
Spin and Gradient Multiple Overlapping-Echo Detachment Imaging (SAGE-MOLED): Highly Efficient T2, T 2 * $$ {T}_2^{\ast } $$ , and M0 Mapping for Simultaneous Perfusion and Permeability Measurements
2025-Nov-02, Magnetic resonance in medicine IF:3.0Q2
研究论文 开发了一种基于多重重叠回波分离的SAGE-MOLED成像技术,用于高效获取无畸变的T2、T2*和M0映射,实现灌注和渗透性的同步测量 通过优化回波时间采样和集成多序列反向EPI技术,开发了SAGE-MOLED方法,克服了传统SAGE-EPI的空间分辨率低和几何畸变问题 研究包含水模实验、健康志愿者和初步临床研究,样本规模有限,需要更大规模的临床验证 开发高效的磁共振成像技术,实现同时测量组织灌注和血管渗透性参数 水模、健康志愿者和临床患者 医学影像 NA 磁共振成像(MRI)、多重重叠回波分离成像(MOLED)、自旋梯度回波EPI(SAGE-EPI) 深度学习模型 磁共振影像数据 水模实验、健康志愿者和初步临床研究 NA 端到端深度学习架构 皮尔逊相关系数(T2:0.991,T2*:0.988) NA
1709 2025-11-04
Comparing innovative artificial intelligence algorithms to assess echocardiographic videos for clinical modeling
2025-Nov, The Journal of thoracic and cardiovascular surgery IF:4.9Q1
研究论文 比较多种创新人工智能算法评估超声心动图视频以开发临床预测模型 首次在可变样本量设置下系统比较3D卷积神经网络、视频视觉变换器和混合卷积神经网络-长短期记忆模型在监督学习与半监督学习中的性能 研究样本量相对有限(最大800个视频数据集),未在更大规模数据上验证模型泛化能力 开发基于视频超声心动图图像的预测模型并评估不同样本量下的最优性能指标 超声心动图视频数据 计算机视觉 心血管疾病 超声心动图 3D CNN, Video Vision Transformer, CNN+LSTM 视频 200、400、800个视频数据集 NA ResNet3D, ResNet+LSTM 平均绝对误差(MAE), 均方根误差(RMSE) NA
1710 2025-11-04
Upper Airway Volume Predicts Brain Structure and Cognition in Adolescents
2025-Nov, American journal of respiratory and critical care medicine IF:19.3Q1
研究论文 本研究通过深度学习分析儿童上呼吸道容积与大脑结构及认知功能的关系 首次在大型儿科队列中应用深度学习进行上呼吸道分割,揭示上呼吸道容积作为儿童睡眠呼吸障碍认知结果的潜在生物标志物 研究为观察性设计,无法确定因果关系 探究上呼吸道容积与儿童认知功能和大脑结构的关系 11,875名9-10岁儿童 医学影像分析 睡眠呼吸障碍 磁共振成像 深度学习 磁共振影像切片 11,875名儿童,5,552,640个脑部MRI切片 NA NA 置信区间,p值 NA
1711 2025-11-04
Deep learning-assisted comparison of different models for predicting maxillary canine impaction on panoramic radiography
2025-Nov, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics IF:2.7Q1
研究论文 本研究使用深度学习辅助的自动标志点检测系统比较不同模型在全景X光片上预测上颌尖牙阻生的准确性 首次采用深度学习自动标志点定位系统辅助测量几何参数,并对外部验证的三种现有预测模型进行性能比较 最有效的模型仍受逻辑和计算挑战的限制,需要进一步改进 比较现有模型在全景X光片上预测上颌尖牙阻生的准确性 7-14岁接受全景X光检查并被诊断为尖牙阻生的患者 计算机视觉 牙科疾病 全景X光摄影 深度学习 X光图像 102张全景X光片(102颗阻生尖牙和102颗非阻生尖牙) NA NA 准确率, 灵敏度, 特异性, 精确度, AUC NA
1712 2025-11-04
An updated patent review of small molecule glucagon receptor antagonists (2020-2024)
2025-Nov, Expert opinion on therapeutic patents IF:5.4Q1
综述 本文系统回顾了2020-2024年间小分子胰高血糖素受体拮抗剂的最新专利进展 发现创新主体从制药公司转向学术机构,并采用深度学习和虚拟筛选技术开发新型化学结构 仍需临床研究验证这些化合物能否克服当前开发瓶颈并解决安全性问题 评估小分子胰高血糖素受体拮抗剂在糖尿病治疗中的最新发展 小分子胰高血糖素受体拮抗剂 药物研发 糖尿病 深度学习, 虚拟筛选, 结构研究, 机制研究 NA 专利数据, 文献数据, 临床数据 NA NA NA NA NA
1713 2025-11-04
A Multimodal Deep Learning Approach for White Matter Shape Prediction in Diffusion MRI Tractography
2025-Nov, Human brain mapping IF:3.5Q1
研究论文 提出一种名为Tract2Shape的多模态深度学习框架,用于从扩散MRI纤维束成像数据中预测白质形状测量指标 首次将几何流线特征(点云)与标量数据描述符(表格数据)相结合的多模态深度学习框架,采用连体架构和双编码器设计学习模态特定表示 未明确说明模型在更广泛疾病群体中的泛化能力,以及对其他类型白质纤维束的适用性 开发高效准确的白质形状测量预测方法,支持大规模白质形状分析 人类白质纤维束的形状测量指标 医学影像分析 神经系统疾病 扩散MRI纤维束成像 多模态深度学习, Siamese网络 点云数据, 表格数据 人类连接组计划年轻成人数据集和帕金森病进展标志物倡议数据集 NA 双编码器设计, Siamese架构 Pearson相关系数, 归一化均方误差 NA
1714 2025-11-04
Deep learning models for segmentation and quantification of left atrial appendage volume using noncontrast cardiac computed tomography
2025-Nov-01, Journal of cardiovascular imaging
研究论文 本研究评估了四种基于U-Net的深度学习架构在非对比心脏CT扫描中对左心耳进行半自动分割和体积测量的性能 首次在非对比心脏CT扫描中系统比较多种3D U-Net变体用于左心耳分割和体积量化 回顾性研究设计,样本仅来自60岁以上患者,缺乏外部验证 开发准确的左心耳自动分割和体积测量方法以支持心血管风险评估 452名60岁以上因胸痛评估接受非对比心脏CT扫描的患者 医学影像分析 心血管疾病 非对比心脏计算机断层扫描(NCCT) CNN 3D医学影像 452名患者 NA UNet3D, Residual-UNet3D, 3D Attention-UNet, Res16-PAC-UNet Dice系数, Pearson相关系数, Bland-Altman分析 NA
1715 2025-11-04
Artificial intelligence in the diagnosis of gastro-entero-pancreatic neuroendocrine neoplasms: Potential benefits and current limitations
2025-Nov, Journal of neuroendocrinology IF:3.3Q2
综述 本文综述了人工智能在胃肠胰神经内分泌肿瘤诊断中的潜在应用与当前局限 首次系统探讨AI在GEP-NENs诊断中的具体应用潜力及实施障碍 当前AI在NENs领域的研究文献有限,尚未建立临床常规应用标准 评估AI在胃肠胰神经内分泌肿瘤诊断中的价值与挑战 胃肠胰神经内分泌肿瘤(GEP-NENs) 数字病理 神经内分泌肿瘤 机器学习,深度学习 NA 医学影像 NA NA NA NA NA
1716 2025-11-04
Tackling the issue of confined chemical space with AI-based de novo drug design and molecular optimization
2025-Nov, Expert opinion on drug discovery IF:6.0Q1
综述 本文探讨了AI在解决化学空间受限问题中的新药设计和分子优化应用 利用基于条件的生成式AI技术探索化学空间中受限和未开发区域 评估设计分子合成可行性而不损害结构新颖性、基准数据集可用性和多样性不足、设计缺乏大规模实验验证 扩展治疗可利用的化学空间区域 药物候选分子 机器学习 NA AI驱动的从头药物设计、分子优化、逆合成预测 深度学习架构 化学结构数据 NA NA 生成式AI NA NA
1717 2025-11-03
A fourfold-objective-based cloud privacy preservation model with proposed association rule hiding and deep learning assisted optimal key generation
2025-Nov, Network (Bristol, England)
研究论文 提出一种基于四重目标的云隐私保护模型,结合关联规则隐藏和深度学习辅助的最优密钥生成技术 提出四阶段安全保护方法,结合增强动态项集计数的关联规则挖掘和新混合优化方法的LSTM密钥生成 NA 开发有效的云环境隐私保护方案 云环境中的敏感数据 机器学习 NA 关联规则挖掘,深度学习 LSTM 敏感数据 NA NA LSTM 隐私保护值 NA
1718 2025-11-03
Enhancing effort estimation in global software development using a unique combination of Neuro Fuzzy Logic and Deep Learning Neural Networks (NFDLNN)
2025-Nov, Network (Bristol, England)
研究论文 提出一种结合神经模糊逻辑和深度学习神经网络的NFDLNN模型,用于提升全球软件开发中的工作量估算精度 首次将神经模糊逻辑与深度学习神经网络相结合,并采用布谷鸟算法优化模型收敛性 未明确说明模型在不同类型软件开发项目中的泛化能力 提高全球软件开发项目的工作量和成本估算准确性 工业软件开发项目数据 机器学习 NA 函数点分析(Function Point Analysis) 神经模糊逻辑,深度学习神经网络 项目数据 工业项目数据集(具体数量未说明) NA NFDLNN(神经模糊逻辑与深度学习神经网络组合架构) MRE(平均相对误差), BRE(平衡相对误差), PI(预测指数) NA
1719 2025-11-03
An Improved Archimedes Optimization-aided Multi-scale Deep Learning Segmentation with dilated ensemble CNN classification for detecting lung cancer using CT images
2025-Nov, Network (Bristol, England)
研究论文 提出一种改进的基于阿基米德优化的多尺度深度学习分割方法,结合扩张集成CNN分类用于CT图像中的肺癌检测 提出自适应多尺度扩张Trans-Unet3+分割模型和基于改进传递算子的阿基米德优化算法(MTO-AO),以及结合Inception、ResNet和MobileNet的先进扩张集成CNN分类器 NA 提高CT图像中肺癌检测的准确性 肺部CT图像中的肺结节 计算机视觉 肺癌 CT扫描 CNN, Trans-Unet3+ CT图像 NA NA Trans-Unet3+, Inception, ResNet, MobileNet NA NA
1720 2025-11-03
Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in cloud computing
2025-Nov, Network (Bristol, England)
研究论文 提出一种混合深度学习和优化聚类机制用于云计算中的负载均衡与容错 结合深度嵌入聚类(DEC)和深度Q递归神经网络(DQRNN)的混合深度学习架构,通过多维度资源指标实现智能负载分配 NA 解决云计算环境中的负载均衡和容错问题以提高能源效率 云计算虚拟机和任务分配 机器学习 NA 深度学习 DEC, DQRNN 系统资源数据(CPU、带宽、内存等) NA NA 深度嵌入聚类, 深度Q递归神经网络 负载值, 容量值, 资源消耗率, 成功率 NA
回到顶部