深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202512-202512] [清除筛选条件]
当前共找到 2152 篇文献,本页显示第 381 - 400 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
381 2026-01-02
Establishment of High-Precision Ultrasound Diagnosis Methods Based on the Introduction of Deep Learning
2025-Dec-31, IEEE reviews in biomedical engineering IF:17.2Q1
综述 本文综述了基于深度学习的高精度超声诊断方法的建立,包括技术原理、临床应用及挑战 提出了针对超声诊断局限性的评估框架,并系统性地整理了深度学习在解决这些局限性方面的最新方法及临床应用证据 现有综述缺乏针对临床实施的定制化评估框架,且深度学习仍面临泛化性、安全性和操作负担等挑战 建立高精度超声诊断方法,通过引入深度学习技术改善临床工作流程 超声诊断技术及其在肿瘤学和心脏病学中的应用 计算机视觉 肺癌, 心血管疾病 超声成像 深度学习 图像 NA NA NA NA NA
382 2026-01-02
Fast electromagnetic field simulation using a current-density- based physics-informed neural network
2025-Dec-31, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于电流密度的物理信息神经网络模型,用于高效模拟电磁场并解决电流密度相关问题 通过结合物理数学先验知识与深度学习,构建了基于电流密度的PINN模型,克服了传统泊松方程求解器的效率低下和适应性不足的缺点 NA 解决电磁场模拟和电流密度相关问题的计算效率与适应性挑战 电磁场模拟中的泊松方程求解,具体应用于激光-靶相互作用产生的电磁脉冲模拟和场-电路耦合积分中的电场计算 机器学习 NA 物理信息神经网络 PINN NA NA NA NA 相对误差 NA
383 2026-01-02
SARCDNet-an enhanced deep learning network for change detection from bi-temporal SAR images
2025-Dec-31, Scientific reports IF:3.8Q1
研究论文 本文提出了一种名为SARCDNet的增强型深度学习网络,用于从双时相SAR图像中进行变化检测 设计了自适应融合块,结合了在频域提取特征的自适应全局滤波操作和通道注意力机制,以增强提取特征的相关性,并有效减轻斑点噪声影响 NA 开发一种用于双时相SAR图像变化检测的深度学习网络,以提高在洪水检测、环境监测等应用中的预测精度 双时相合成孔径雷达(SAR)图像 计算机视觉 NA 合成孔径雷达(SAR)成像 深度学习网络 图像 使用了公共数据集,包括黄河、农田和巢湖数据集 NA SARCDNet F1分数, PCC, κ, MCC NA
384 2026-01-02
A clinically validated 3D deep learning approach for quantifying vascular invasion in pancreatic cancer
2025-Dec-31, NPJ digital medicine IF:12.4Q1
研究论文 本文介绍了一种名为PAN-VIQ的自动化深度学习框架,用于从增强CT扫描中量化胰腺癌的血管侵犯情况 开发了一种自动化3D深度学习框架,能够量化肿瘤与血管的3D包绕角度,并同时评估多个关键血管的侵犯情况,超越了传统依赖放射科医生主观2D判读的方法 未明确说明模型在更广泛人群或不同扫描设备上的泛化能力,以及对于罕见解剖变异的处理能力 开发一种自动化工具,用于标准化胰腺导管腺癌(PDAC)术前血管侵犯评估,减少观察者间差异 胰腺导管腺癌(PDAC)患者 数字病理学 胰腺癌 对比增强CT扫描 深度学习 3D医学图像(CT扫描) 训练与内部验证:2130例;前瞻性测试:202例患者 NA NA 准确率,召回率 NA
385 2026-01-02
A multi-objective optimization framework integrating ICSL deep learning for forecasting and scheduling emergency medical supply demand in public health emergencies
2025-Dec-31, Scientific reports IF:3.8Q1
研究论文 本文提出了一种集成ICSL深度学习与多目标优化的框架,用于预测和调度公共卫生突发事件中的应急医疗物资需求 结合传染病特征和政府隔离措施影响,通过改进的LSTM模型提高预测精度,并构建考虑紧迫性、调度时间和成本的多目标调度分配模型 NA 解决重大疫情中后期应急医疗物资的预测与分配挑战 应急医疗物资的需求预测与调度分配 机器学习 传染病 深度学习 LSTM, BP神经网络 时间序列数据 武汉疫情防控措施数据 NA LSTM, BP神经网络 准确率 NA
386 2026-01-02
Epidemic dynamics prediction using fractional SIRD and deep learning
2025-Dec-31, Scientific reports IF:3.8Q1
研究论文 本文介绍、分析并数值研究了一种采用归一化Caputo-Fabrizio导数的分数阶SIRD流行病模型,结合深度学习技术进行流行病动态预测 提出了一种结合分数阶微积分(使用归一化Caputo-Fabrizio导数)和深度学习的SIRD模型,能够捕捉记忆效应并显式跟踪疾病导致的死亡率 NA 开发一个更全面的流行病动态预测框架,以支持公共卫生决策 流行病传播动态,特别是SIRD(易感者-感染者-康复者-死亡者)模型中的各群体 机器学习 NA 分数阶微积分,深度学习 深度神经网络 模拟的流行病数据 NA NA 深度神经网络 均方误差,均方根误差 NA
387 2026-01-02
Deep learning-based predictive models for assessing the impact of clinical factors and second primary malignancy on survival in patients with colorectal cancer
2025-Dec-31, European journal of medical research IF:2.8Q2
研究论文 本研究开发了基于深度学习的预测模型,用于评估临床因素和第二原发恶性肿瘤对结直肠癌患者生存率的影响 首次利用大规模结直肠癌伴第二原发恶性肿瘤患者数据集,开发多时间点生存预测深度学习模型,并系统分析33个临床因素的影响 未明确说明模型的具体架构细节和外部验证情况 预测结直肠癌伴第二原发恶性肿瘤患者的生存结局,并分析关键影响因素 21,522名结直肠癌伴第二原发恶性肿瘤患者 数字病理 结直肠癌 深度学习 深度学习模型 临床数据 21,522名患者 NA NA AUC NA
388 2026-01-02
UniSplicer: a deep learning framework for accurate splice-site prediction and splice-altering mutation detection across diverse taxa
2025-Dec-31, Plant communications IF:9.4Q1
研究论文 本文介绍了一个基于深度学习的框架UniSplicer,用于准确预测剪接位点并检测剪接改变突变,适用于多种物种 UniSplicer能够在转录组数据相对有限的情况下,为多种非模式物种开发准确的剪接位点预测模型,超越现有模型,并能可靠指示突变对剪接的影响 模型性能可能受限于可用转录组数据的质量和数量,且在极端非模型物种中的泛化能力未完全验证 开发一个通用深度学习框架,以准确预测剪接位点和检测剪接改变突变,促进非模式物种的基因组分析 多种物种的剪接位点,包括植物、真菌和后生动物,以及剪接位点附近的序列变异 自然语言处理 NA 转录组数据 深度学习 序列数据 相对有限的转录组数据 NA NA 预测准确性 NA
389 2026-01-02
Fuzzy granulation-based wind speed prediction with multi-objective optimization
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于模糊信息粒化和多目标优化的新型多尺度风功率预测框架 结合模糊信息粒化技术与多目标优化策略,有效捕捉风速数据的固有特征并降低数据复杂性,通过启发式优化算法自适应整合多个神经网络的输出 NA 提高风功率预测的准确性和鲁棒性,以支持可再生能源整合和全球脱碳倡议 风速数据 机器学习 NA 模糊信息粒化 深度学习模型,多个神经网络 风速数据 蓬莱风电场数据集 NA NA 预测准确性,计算效率 NA
390 2026-01-02
Osprey optimization algorithm integrated with graph neural networks for intrusion detection in wireless sensor networks
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 提出一种结合鱼鹰优化算法和图神经网络的入侵检测方法,用于提升无线传感器网络的安全性 首次将鱼鹰优化算法与图神经网络结合,用于优化图神经网络的超参数,以提升无线传感器网络中复杂攻击模式的检测性能 使用单一数据集(WSN-DS)进行评估,且该数据集本身存在不平衡问题,需依赖SMOTE技术进行数据平衡处理 开发一种高效的入侵检测系统,以应对无线传感器网络中日益复杂的网络攻击 无线传感器网络中的网络流量和攻击模式 网络安全 NA NA 图神经网络 网络流量数据 NA NA 图神经网络 准确率, 误报率 NA
391 2026-01-02
ISAAF: an IoT security and attack prevention framework using AI-driven predictive analytics
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种基于AI预测分析的物联网安全与攻击预防框架,用于实时入侵检测和自动化缓解 引入了MQTTEEB-D作为真实世界物联网入侵数据集,并基于此构建了分层AI驱动的安全框架,显著提升了模型在真实场景中的泛化能力 未明确说明框架在极端或新型攻击类型下的性能表现,且可能依赖于特定物联网测试床环境 开发一个可扩展、可部署的跨领域物联网安全解决方案,以应对MQTT协议面临的网络威胁 物联网系统中的网络攻击,包括DoS、Bruteforce、Malformed、Flood和Slowite攻击 机器学习 NA AI驱动的预测分析 决策树, GRU 网络流量数据 基于MQTTEEB-D真实世界入侵数据集,具体样本数量未明确 未明确指定,可能涉及多种ML/DL框架 决策树, GRU 准确率 未明确说明
392 2026-01-02
Ultrasound and SWE-based transfer learning for predicting fibrotic NASH
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本研究开发了一种结合肝脏超声、肝脏弹性成像图像和临床特征的深度学习模型,用于预测和诊断纤维化非酒精性脂肪性肝炎 首次提出结合肝脏超声、肝脏弹性成像图像和临床特征的多模态深度学习模型,基于ResNet-18架构,用于预测和诊断纤维化NASH 研究基于大鼠模型,尚未在人类临床数据中进行验证 开发深度学习模型以预测和诊断纤维化非酒精性脂肪性肝炎 高脂饮食和皮下CCl₄注射诱导的肝脏脂肪变性和纤维化大鼠模型 计算机视觉 非酒精性脂肪性肝炎 二维超声, 剪切波弹性成像 CNN 图像, 临床特征 NA NA ResNet-18 AUC, ROC曲线, 决策曲线分析, 校准曲线 NA
393 2026-01-02
Terahertz metamaterial liquid detector optimized by deep learning
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本研究提出了一种基于超材料太赫兹探测器吸收峰偏移的无标记乙醇液体检测方法 采用深度神经网络优化超材料液体探测器的结构参数,实现了高吸收率和位移值,并揭示了VO₂在不同温度下对吸收波调控的作用机制 NA 开发一种高效、精确的乙醇液体检测新方法 乙醇液体 机器学习 NA 太赫兹检测 深度神经网络 仿真数据 NA NA DNN 灵敏度, 品质因数 NA
394 2026-01-02
Automatic classification of uveal melanoma response patterns following ruthenium-106 plaque brachytherapy using ultrasound images and deep convolutional neural network
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本研究应用深度学习模型自动分类葡萄膜黑色素瘤在钌-106斑块近距离放射治疗后基于超声图像的肿瘤厚度响应模式 首次将深度学习模型(DenseNet121和ResNet34)应用于葡萄膜黑色素瘤近距离放射治疗后肿瘤响应模式的自动分类,并比较了不同模型和训练设置的性能 研究样本量相对较小(192名患者),且需要进一步验证和探索模型在临床实践中的整合应用 预测葡萄膜黑色素瘤患者在接受钌-106斑块近距离放射治疗后的肿瘤响应模式 葡萄膜黑色素瘤患者 计算机视觉 葡萄膜黑色素瘤 超声成像(A模式和B模式) CNN 图像 192名患者 NA DenseNet121, ResNet34 AUC, 准确率 NA
395 2026-01-02
Design of a hybrid learning model for establishing consistency in smart grid environment
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本文提出了一种结合LSTM和神经模糊自适应干扰模型的混合学习模型,用于智能电网环境中的负荷预测 提出了一种混合LSTM与神经模糊自适应干扰模型(NFADIM)的新方法,用于处理智能电网的大规模数据并改善负荷预测精度 NA 通过深度学习技术识别消费者数据模式并基于不同预测时间范围预测电力需求,以优化智能电网的供需平衡 智能电网中的消费者能源需求模式和电力传输数据 机器学习 NA 深度学习 LSTM, NFADIM 时间序列数据 NA NA LSTM, 神经模糊自适应干扰模型 NA NA
396 2026-01-02
Differences in different reconstruction algorithms for coronary CTA demonstrating pericoronary adipose tissue attenuation
2025-Dec-29, Scientific reports IF:3.8Q1
研究论文 本研究评估了三种不同重建算法(DLIR-H、ASiR-V50%、FBP)在冠状动脉CTA中测量心周脂肪组织衰减指数(FAI)的差异 首次系统比较了深度学习图像重建(DLIR-H)、自适应统计迭代重建(ASiR-V50%)和滤波反投影(FBP)三种算法对FAI测量的影响,强调了标准化重建协议在FAI研究中的重要性 研究未涉及算法差异对临床结局的影响,且样本分组基于斑块类型,可能未涵盖所有临床亚组 评估不同重建算法对冠状动脉CTA中心周脂肪组织衰减指数(FAI)测量的影响 冠状动脉CTA图像及心周脂肪组织 医学影像分析 心血管疾病 冠状动脉计算机断层扫描血管造影(CCTA) NA 医学影像(CT图像) NA NA NA 衰减值、图像噪声、脂肪衰减指数(FAI) NA
397 2026-01-02
Assessing deep learning accuracy in the measurement of radiographic parameters in pediatric hip X-rays
2025-Dec-29, BMC medical imaging IF:2.9Q2
研究论文 本研究开发并验证了一个基于深度学习的系统,用于测量儿童骨盆X光片中的放射学参数,并评估其在不同年龄组中的准确性 该研究首次提供了一个全面的深度学习解决方案,用于同时测量多个关键放射学参数,并进行了年龄特异性的可靠性分析 研究仅使用了韩国正常儿童的X光片数据,可能限制了模型在其他人群或异常情况下的泛化能力 评估深度学习在测量儿童髋关节X光片放射学参数中的准确性,并分析年龄相关骨盆发育对测量性能的影响 儿童骨盆X光片 计算机视觉 儿科髋关节疾病 X光成像 深度学习 图像 训练集1495张,评估集1300张韩国儿童前后位骨盆X光片 NA NA 组内相关系数, 皮尔逊相关系数, 平均绝对误差, 均方根误差, 豪斯多夫距离, 弗雷歇距离 NA
398 2026-01-02
Deep learning for Alzheimer's disease: advances in classification, segmentation, subtyping, and explainability
2025-Dec-29, Biomedical engineering online IF:2.9Q3
综述 本文综述了深度学习在阿尔茨海默病分类、分割、亚型分析和可解释性方面的最新进展,并探讨了其临床转化的挑战与未来方向 提出了一个将深度学习在阿尔茨海默病研究中的应用分为三大支柱(端到端分类、多模态融合、自动分割)的连贯框架,并系统整合了亚型分析和可解释性方法 作为综述文章,未提出新的模型或方法,主要总结现有研究;临床转化部分仍面临数据异质性、可解释性与准确性权衡等挑战 为阿尔茨海默病的早期检测和个性化预后提供深度学习解决方案,并推动其向临床实践转化 阿尔茨海默病患者的多模态数据,包括结构/功能MRI、PET、遗传谱和认知测试 医学影像分析 阿尔茨海默病 深度学习 CNN, 聚类模型, 决策树模型 图像(MRI, PET), 遗传数据, 认知测试数据 NA NA NA 准确率, 灵敏度/特异度, Dice系数, Jaccard指数 NA
399 2025-12-31
Deep learning based on ultrasound for differential diagnosis of pancreatic serous cystic neoplasm and mucinous cystic neoplasm
2025-Dec-29, BMC cancer IF:3.4Q2
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
400 2026-01-02
Advances in AI for predicting pharmacological properties of natural medicines
2025-Dec-29, Life sciences IF:5.2Q1
综述 本文综述了人工智能在预测天然药物药理特性方面的应用,包括模型构建原理、最新进展、特征选择和评估指标等关键方面,并讨论了天然药物开发的挑战与机遇 系统总结了AI在天然药物开发中的高通量筛选、活性化合物预测及ADMET性质早期预测方面的最新进展和应用潜力 NA 介绍人工智能在预测天然药物药理特性方面的应用,并探讨其在药物开发中的挑战与机遇 天然药物及其药理特性 机器学习 NA NA NA 现有数据集和实验数据 NA NA NA NA NA
回到顶部