本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!
除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121 | 2025-01-05 |
DEELE-Rad: exploiting deep radiomics features in deep learning models using COVID-19 chest X-ray images
2025-Dec, Health information science and systems
IF:4.7Q1
DOI:10.1007/s13755-024-00330-6
PMID:39741501
|
研究论文 | 本文提出了一种名为DEELE-Rad的方法,通过深度学习模型提取深度放射组学特征,用于COVID-19胸部X光图像的分类,并提供了可视化的解释以支持决策 | 结合深度学习和机器学习技术,利用迁移学习从ImageNet中提取深度放射组学特征,并通过自动参数调整和交叉验证策略优化分类器性能 | 未提及具体的数据集规模或多样性限制,可能影响模型的泛化能力 | 开发一种基于深度学习的放射组学方法,用于COVID-19胸部X光图像的分类,以辅助医疗决策 | COVID-19患者的胸部X光图像 | 计算机视觉 | COVID-19 | 深度学习、迁移学习 | VGG16, ResNet50V2, DenseNet201 | 图像 | 未提及具体样本数量 |
122 | 2024-12-25 |
AI-driven approaches for automatic detection of sleep apnea/hypopnea based on human physiological signals: a review
2025-Dec, Health information science and systems
IF:4.7Q1
DOI:10.1007/s13755-024-00320-8
PMID:39712669
|
综述 | 本文综述了近年来基于人工智能技术的自动睡眠呼吸暂停/低通气检测方法 | 总结了现有工作的通用流程,并涵盖了不同生理信号的特定预处理方法 | 面临数据可用性有限、数据不平衡问题以及多中心研究必要性等挑战 | 探讨基于人工智能技术的自动睡眠呼吸暂停/低通气检测方法 | 睡眠呼吸暂停/低通气检测方法及其相关生理信号 | 机器学习 | 心血管疾病 | 机器学习和深度学习模型 | NA | 生理信号 | NA |
123 | 2024-12-12 |
LesionScanNet: dual-path convolutional neural network for acute appendicitis diagnosis
2025-Dec, Health information science and systems
IF:4.7Q1
DOI:10.1007/s13755-024-00321-7
PMID:39654693
|
研究论文 | 本文提出了一种名为LesionScanNet的双路径卷积神经网络模型,用于急性阑尾炎的计算机辅助诊断 | LesionScanNet模型具有轻量级设计,包含多个DualKernel块,通过两条路径处理输入图像,分别使用3×3和1×1滤波器,展示了在急性阑尾炎诊断中的高准确性和泛化能力 | NA | 开发一种高效的卷积神经网络模型,用于急性阑尾炎的计算机辅助诊断 | 急性阑尾炎的诊断 | 计算机视觉 | 急性阑尾炎 | 卷积神经网络 | CNN | 图像 | 2400张CT扫描图像 |