本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1881 | 2025-11-25 |
White matter brain age as a biomarker of cerebrovascular burden in the ageing brain
2025-Dec, European archives of psychiatry and clinical neuroscience
IF:3.5Q2
DOI:10.1007/s00406-024-01758-3
PMID:38424358
|
研究论文 | 开发白质特异性脑年龄作为评估脑血管负担的生物标志物 | 首次使用三维卷积神经网络从扩散加权成像中开发白质特异性脑年龄评估方法 | 研究主要基于英国生物银行数据,需要更多样化人群验证 | 探究血管风险因素对白质健康的影响 | 英国生物银行参与者(横断面37,327人,纵向1,409人) | 医学影像分析 | 脑血管疾病 | 扩散加权成像 | CNN | 医学影像 | 横断面37,327人,纵向子集1,409人 | NA | 三维卷积神经网络 | 白质脑年龄差距 | NA |
| 1882 | 2025-11-25 |
Multi-class deep learning architecture for COVID-19, tuberculosis, and pneumonia classification using chest X-ray images
2025-Dec, Journal of medical imaging and radiation sciences
IF:1.3Q3
DOI:10.1016/j.jmir.2025.102115
PMID:41067063
|
研究论文 | 提出基于卷积神经网络的多分类框架,使用胸部X光图像自动检测COVID-19、结核病、肺炎和正常状况 | 开发统一深度学习流程整合数据预处理、特征提取和分类,并应用SMOTE技术解决类别不平衡问题 | 目前仅为研究框架,尚未应用于临床环境 | 开发智能系统辅助医生诊断复杂肺部疾病 | COVID-19、结核病、肺炎患者和正常人的胸部X光图像 | 计算机视觉 | 肺部疾病 | 胸部X光成像 | CNN | 图像 | 6000张胸部X光图像,四类别均衡分布 | NA | ResNet-50, EfficientNet, DenseNet, VGG-19 | 准确率, 精确率, 召回率, F1分数 | NA |
| 1883 | 2025-11-24 |
Risk factors and prognostic indicators for progressive fibrosing interstitial lung disease: a deep learning-based CT quantification approach
2025-Dec, European radiology
IF:4.7Q1
DOI:10.1007/s00330-025-11714-x
PMID:40526353
|
研究论文 | 本研究采用基于深度学习的CT定量方法预测进行性纤维化性间质性肺疾病及其预后 | 首次将深度学习CT定量技术应用于PF-ILD的预测和预后评估,证明了其在传统肺功能指标基础上的附加价值 | 单中心回顾性研究,样本量有限(465例患者) | 探索基于深度学习的定量CT在预测进行性纤维化性间质性肺疾病和评估预后方面的价值 | 间质性肺疾病患者 | 医学影像分析 | 间质性肺疾病 | CT扫描,深度学习定量分析 | 深度学习模型 | CT影像 | 465例ILD患者(中位年龄65岁,男性238例),其中148例发展为PF-ILD | NA | NA | C-index, OR值, HR值 | NA |
| 1884 | 2025-11-24 |
ProMUS-NET: Artificial intelligence detects more prostate cancer than urologists on micro-ultrasonography
2025-Dec, BJU international
IF:3.7Q1
DOI:10.1111/bju.16892
PMID:40859774
|
研究论文 | 开发用于前列腺微超声图像自动癌症分割的深度学习模型ProMUS-NET,并与泌尿科专家性能进行比较 | 首次开发专门用于微超声图像的前列腺癌检测AI模型,在检测灵敏度方面超越泌尿科专家 | 需要改进边缘重叠精度,减少假阳性,并进行外部验证 | 提高前列腺癌在微超声图像上的定位灵敏度和读者间一致性 | 接受MRI-超声融合引导活检的前列腺癌患者 | 数字病理 | 前列腺癌 | 微超声成像,MRI-超声融合引导活检 | 深度学习 | 医学图像 | 单机构前瞻性收集的微超声图像数据集 | NA | U-Net | AUC, 灵敏度, 特异性 | NA |
| 1885 | 2025-11-24 |
Artificial intelligence-driven intelligent nanocarriers for cancer theranostics: A paradigm shift with focus on brain tumors
2025-Dec, Seminars in oncology
IF:3.0Q2
DOI:10.1016/j.seminoncol.2025.152429
PMID:41218468
|
综述 | 探讨人工智能驱动智能纳米载体在脑癌诊疗一体化中的革命性应用 | 提出AI与纳米技术融合的智能纳米载体新范式,实现肿瘤微环境响应和个性化治疗 | 存在批次变异性和工业规模化生产的挑战,以及伦理与成本问题 | 开发人工智能增强的智能纳米载体用于脑癌诊疗一体化 | 胶质母细胞瘤和其他中枢神经系统转移性肿瘤 | 数字病理 | 脑肿瘤 | 多组学数据整合,MRI,PET | 机器学习,深度学习 | 医学影像,多组学数据 | NA | NA | NA | NA | NA |
| 1886 | 2025-11-24 |
Street-view greenspace distribution across racial/ethnic, neighborhood income, and individual education subgroups
2025-Dec, Environmental epidemiology (Philadelphia, Pa.)
DOI:10.1097/EE9.0000000000000441
PMID:41268185
|
研究论文 | 本研究使用深度学习分析街景图像,探讨不同种族/民族、教育水平和社区社会经济地位亚组之间绿化空间分布的差异 | 首次结合深度学习与多层次分析方法,量化不同类型绿化空间在种族/民族、教育水平和社区社会经济地位交叉分层中的分布不平等 | 研究样本仅来自动脉粥样硬化多种族研究参与者,可能无法完全代表更广泛人群 | 探究种族/民族、教育水平和社区社会经济地位的交互作用如何影响绿化空间类型分布 | 5,858名动脉粥样硬化多种族研究参与者(2000-2002年) | 计算机视觉 | 动脉粥样硬化 | 街景图像分析 | 深度学习算法 | 图像 | 5,858名参与者 | NA | NA | NA | NA |
| 1887 | 2025-11-24 |
Development and validation of a video-based deep learning model for distinguishing epileptic seizures from non-epileptic events in a pediatric cohort
2025-Dec, Epilepsy & behavior : E&B
IF:2.3Q2
DOI:10.1016/j.yebeh.2025.110785
PMID:41110273
|
研究论文 | 开发并验证基于视频的深度学习系统,用于区分儿科队列中的癫痫发作与非癫痫事件 | 提出增强型多尺度视觉Transformer模型,首次在儿科癫痫诊断中进行前瞻性验证并与不同级别临床医生进行对比 | 对非运动性事件的诊断准确性相对有限,样本量相对较小 | 开发AI辅助诊断工具以区分儿科癫痫发作与非癫痫事件 | 儿科患者的癫痫发作和非癫痫事件视频数据 | 计算机视觉 | 癫痫 | 视频分析 | Transformer | 视频 | 438个回顾性收集视频用于训练,130个连续视频用于前瞻性验证 | PyTorch | 增强型多尺度视觉Transformer, MViTv2, SlowFast | 准确率, 灵敏度, 特异性 | NA |
| 1888 | 2025-11-24 |
Deep learning approaches for pathological image classification
2025-Dec, Journal of oral biosciences
IF:2.6Q1
DOI:10.1016/j.job.2025.100696
PMID:41274680
|
综述 | 本文综述了基于深度学习的病理图像分类方法及其在精准医疗中的应用 | 介绍了使用模拟器生成合成数据和公式驱动方法等新兴技术来克服传统训练数据集的局限性 | 高质量标注数据集有限,特别是罕见癌症数据缺乏,阻碍了传统数据驱动方法的广泛应用 | 探讨深度学习在病理图像分类中的应用及其在精准医疗中的发展前景 | 病理全切片图像 | 数字病理学 | 癌症 | 全切片成像 | CNN, RNN | 图像 | NA | NA | NA | NA | NA |
| 1889 | 2025-11-23 |
An artificial intelligence mechanism for detecting cystic lesions on CBCT images using deep learning
2025-Dec, Journal of stomatology, oral and maxillofacial surgery
DOI:10.1016/j.jormas.2024.102152
PMID:39551180
|
研究论文 | 本研究开发了一种基于深度学习的人工智能机制,用于在锥形束CT图像上检测和分类囊性病变 | 首次将深度学习CNN架构应用于CBCT图像中牙源性囊肿和根尖周囊肿的自动检测与分类,并采用数据增强技术提升模型性能 | 样本量相对有限(共150个样本),仅针对两种特定类型的囊肿进行研究 | 评估人工智能机制在CBCT图像上检测囊性病变的效率 | 锥形束CT图像中的牙源性囊肿、根尖周囊肿和无病变样本 | 计算机视觉 | 口腔囊肿疾病 | 锥形束CT成像 | CNN | 医学图像 | 150个CBCT样本(50个无病变,50个牙源性囊肿,50个根尖周囊肿) | NA | 深度卷积神经网络 | 召回率, 精确率, F1分数, 平均精度, 灵敏度, 特异性, 准确率, AUC | NA |
| 1890 | 2025-11-23 |
EEG Emotion Copilot: Optimizing lightweight LLMs for emotional EEG interpretation with assisted medical record generation
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107848
PMID:40683189
|
研究论文 | 提出一种优化轻量级大语言模型的EEG情感副驾驶系统,能够从脑电信号识别情感状态并生成个性化医疗建议和电子病历 | 首次将轻量级大语言模型(0.5B参数)应用于EEG情感识别和医疗记录生成,提出新颖的提示数据结构、模型剪枝和微调训练等关键技术 | 未明确说明模型在临床环境中的验证效果和具体适用范围 | 开发端到端的情感计算系统,实现快速处理、个体适应和无缝用户交互 | 脑电信号和情感状态 | 脑机接口,情感计算 | 心理健康相关疾病 | EEG信号分析,大语言模型 | LLM | EEG信号,文本 | NA | NA | 轻量级大语言模型 | 准确率 | 本地部署环境 |
| 1891 | 2025-11-23 |
Continual source-free active domain adaptation for nasopharyngeal carcinoma tumor segmentation across multiple hospitals
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107869
PMID:40684700
|
研究论文 | 提出一种持续源自由主动域自适应框架,用于跨多医院的鼻咽癌肿瘤分割 | 结合自监督和互相关学习提出域参考与不变性选择策略,并开发基于临床实践的双阶段循环蒸馏策略 | NA | 解决多中心数据场景下的域偏移问题,提升鼻咽癌肿瘤分割模型的泛化能力 | 鼻咽癌肿瘤分割 | 数字病理 | 鼻咽癌 | 深度学习 | NA | 医学图像 | 来自三个医疗中心的数据集 | PyTorch | 自监督学习, 知识蒸馏 | NA | NA |
| 1892 | 2025-11-23 |
VDCRL: vulnerability detection with supervised contrastive code representation learning
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107861
PMID:40690875
|
研究论文 | 提出基于监督对比代码表示学习的漏洞检测框架VDCRL,通过代码增强和特征融合提升泛化能力 | 结合输入空间和特征空间的代码增强技术,集成源代码和汇编指令特征的双模态融合方法 | 仅在合成数据集上训练,真实场景适用性有待进一步验证 | 提升代码漏洞检测的泛化能力和检测性能 | 软件源代码和汇编指令 | 自然语言处理 | NA | 代码增强,特征融合 | BGRU | 代码文本 | 合成数据集训练,两个真实数据集测试 | NA | BGRU, SAFE | 检测性能,泛化能力 | NA |
| 1893 | 2025-11-23 |
Dual branch neural network with dynamic learning mechanism for P300-based brain-computer interfaces
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107876
PMID:40712216
|
研究论文 | 提出一种双分支神经网络与动态学习机制来解决P300脑机接口中的类别不平衡问题 | 同时考虑特征表示和类别不平衡的双分支学习方法,采用动态学习机制逐步增强少数类样本的权重 | 采用被试内实验方案,可能限制模型的泛化能力 | 解决P300脑机接口系统中的类别不平衡问题以提高分类性能 | P300脑电信号 | 脑机接口 | 残疾相关疾病 | 脑电信号采集 | 深度学习 | 脑电信号 | 公开数据集和自采集数据集 | NA | 双分支神经网络 | 准确率 | NA |
| 1894 | 2025-11-23 |
A comprehensive assessment benchmark for rigorously evaluating deep learning image classifiers
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107801
PMID:40714476
|
研究论文 | 提出一个全面评估深度学习图像分类器性能的基准测试方法 | 倡导使用多种数据类型和统一指标进行综合性能评估,揭示当前先进模型的脆弱性 | 未具体说明评估数据的具体规模和来源 | 开发更全面可靠的深度学习模型评估方法 | 深度学习图像分类器 | 计算机视觉 | NA | NA | 深度神经网络 | 图像 | NA | NA | NA | 统一评估指标 | NA |
| 1895 | 2025-11-23 |
Nucleotide-level circRNA-RBP binding sites prediction based on hybrid encoding scheme and enhanced feature extraction
2025-Dec, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.107923
PMID:40753814
|
研究论文 | 提出基于混合编码方案和增强特征提取的核苷酸级circRNA-RBP结合位点预测框架circdpb | 整合one-hot和高斯调制位置编码,采用扩张卷积特征金字塔和双向门控循环单元增强特征提取,实现核苷酸级精度的结合位点预测 | 未明确说明模型在跨物种或新型circRNA上的泛化能力 | 开发高精度的circRNA与RNA结合蛋白结合位点预测方法 | 环状RNA(circRNA)与RNA结合蛋白(RBP)的结合位点 | 生物信息学 | NA | 深度学习 | CNN, BiGRU | circRNA序列数据 | 37个基准数据集 | NA | 扩张卷积特征金字塔(DCFP), 双向门控循环单元(BiGRU) | NA | NA |
| 1896 | 2025-11-23 |
Advances in computational nephropathology
2025-Dec, Kidney international
IF:14.8Q1
DOI:10.1016/j.kint.2025.06.029
PMID:40976424
|
综述 | 本文全面概述了计算病理学在肾脏病理学领域的进展与应用 | 提出将计算病理学方法整合到肾脏病理学工作流程中,并首次提出“kidnAI病理学”概念 | 存在技术实施、监管和伦理方面的挑战,包括计算基础设施、数据隐私和环境可持续性等问题 | 探讨计算病理学在肾脏病理学领域的应用与发展前景 | 肾脏组织病理图像及相关临床数据 | 数字病理学 | 肾脏疾病 | 人工智能、深度学习 | 深度学习模型 | 组织病理图像 | NA | NA | NA | NA | NA |
| 1897 | 2025-11-23 |
Machine Learning-Based Identification of Natural History Studies in Rare Diseases: A Step toward Understanding Disease Development and Outcome
2025-Dec, Journal of rare diseases (Berlin, Germany)
DOI:10.1007/s44162-025-00115-9
PMID:41245678
|
研究论文 | 提出基于机器学习的自然史研究自动识别方法,用于罕见病研究中的文献筛选 | 首次开发专门用于识别自然史研究的机器学习模型,并证明二元分类在此任务中的优越性 | 仅基于PubMed文献数据,模型性能在四分类任务中仍有提升空间 | 开发自动识别自然史研究的方法以支持罕见病药物研发 | PubMed文献数据库中的自然史研究相关论文 | 自然语言处理 | 罕见病 | 文本挖掘,文献分析 | BERT | 文本 | 手动标注的自然史研究语料库 | PyTorch, Transformers | PubMedBERT-base-uncased-abstract | 精确率, 召回率, F1分数, AUCPR | NA |
| 1898 | 2025-11-23 |
Generative AI and foundation models in medical image
2025-Dec, Radiological physics and technology
IF:1.7Q3
DOI:10.1007/s12194-025-00968-1
PMID:41051729
|
综述 | 本文概述了生成式AI和基础模型在医学影像领域的应用与发展趋势 | 系统分析了生成式AI和基础模型如何从根本上改变医疗AI开发框架,并提出利用国家数据和计算资源开发医学基础模型的路径 | NA | 探讨生成式AI和基础模型在医学影像处理中的应用与发展方向 | 医学影像处理与医疗支持任务 | 医学影像处理 | NA | 扩散模型, 大语言模型 | 生成模型, 基础模型 | 医学影像, 文本数据 | NA | NA | DALL·E 3, Stable Diffusion, ChatGPT, Gemini | NA | 基于扩展定律的大规模计算资源 |
| 1899 | 2025-11-23 |
Accelerated RAKI reconstruction for multi-slice cardiac cine applications
2025-Dec, Medical physics
IF:3.2Q1
DOI:10.1002/mp.70145
PMID:41261061
|
研究论文 | 本研究针对心脏电影MRI提出了一种加速的RAKI重建方法,通过优化训练策略和利用时空冗余性来减少重建时间 | 通过简化RAKI算法结构(移除非线性激活单元并减少层数),并仅训练特定切片和心脏时相,显著加速了重建过程 | 该方法仍存在与k空间优化过程直接相关的条纹伪影 | 优化心脏电影MRI的重建速度同时保证图像质量 | 心脏电影MRI数据 | 医学影像重建 | 心血管疾病 | MRI, 深度学习重建 | CNN | 医学影像, k空间数据 | 10个完全采样的多切片电影数据(来自OCMR公共数据库) | NA | 简化版卷积神经网络(单卷积层) | PSNR, NMSE, SSIM, 重建时间 | NA |
| 1900 | 2025-11-23 |
Real-time quality feedback on Doppler data for community midwives using edge-AI
2025-Dec-01, Machine Learning. Health
DOI:10.1088/3049-477X/ae1bad
PMID:41262494
|
研究论文 | 本研究开发了一种基于深度学习和边缘AI的实时胎儿多普勒数据质量评估技术框架 | 首次将边缘AI技术集成到低成本移动系统中,与危地马拉农村地区的土著助产士共同设计,实现实时数据质量反馈 | 训练数据主要来自单一农村地区,测试数据量较小(仅5个录音),需要更多样化的数据验证泛化能力 | 通过实时质量评估改善胎儿多普勒数据收集,支持低收入地区的临床研究 | 胎儿多普勒信号 | 医疗AI | 妊娠相关疾病 | 多普勒超声 | 深度神经网络 | 音频信号 | 危地马拉农村191个录音(训练验证),德国医院5个录音(测试) | Android, mHealth框架 | 深度神经网络 | F1分数, 准确率, 微平均F1, 宏平均F1 | 边缘计算系统, Android手机 |