本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 361 | 2025-12-27 |
Assessing the relation between protein phosphorylation, AlphaFold3 models, and conformational variability
2026-Jan, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70376
PMID:41432299
|
研究论文 | 本文系统评估了AlphaFold模型(包括AF2、AF3-non phospho和AF3-phospho)在预测磷酸化诱导的蛋白质结构多样性方面的能力 | 首次系统评估AlphaFold模型(特别是AF3-phospho)在捕捉磷酸化驱动的构象变化方面的表现,揭示了其局限性 | 所有模型主要与主导结构状态对齐,往往未能捕捉磷酸化特异性构象,AF3-phospho预测仅提供有限改进 | 评估深度学习模型(特别是AlphaFold)预测磷酸化诱导的蛋白质结构变化的能力 | 蛋白质及其磷酸化修饰 | 机器学习 | 癌症,阿尔茨海默病 | 深度学习,蛋白质结构预测 | AlphaFold (AF2, AF3) | 蛋白质结构数据,实验构象集合 | NA | NA | AlphaFold2, AlphaFold3 | NA | NA |
| 362 | 2025-12-27 |
Assessing the validity of leucine zipper constructs predicted by AlphaFold
2026-Jan, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70438
PMID:41432297
|
研究论文 | 本研究评估了AlphaFold预测的亮氨酸拉链结构域的有效性,特别是针对AP-1转录因子如Fos和Jun的二聚体 | 利用超过2000个实验验证的人类亮氨酸拉链数据,首次系统评估AlphaFold在预测亮氨酸拉链二聚体界面及区分可能/不可能二聚体方面的能力 | AlphaFold可能高置信度预测出在体内因静电排斥而无法形成的二聚体(如FosB同源二聚体),揭示了其高置信度但低准确性的预测案例 | 评估AI驱动的蛋白质结构预测方法(如AlphaFold)在亮氨酸拉链结构域建模中的有效性和局限性 | AP-1转录因子(如Fos和Jun)的亮氨酸拉链结构域及超过2000个人类亮氨酸拉链 | 结构生物学 | NA | AlphaFold2, AlphaFold3, 蛋白质结构预测 | 深度学习 | 氨基酸序列, 多序列比对 | 超过2000个实验验证的人类亮氨酸拉链 | AlphaFold | AlphaFold2, AlphaFold3 | NA | NA |
| 363 | 2025-12-27 |
Automated detection of zygomatic fractures on spiral computed tomography using a deep learning model
2026-Jan, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2025.07.007
PMID:40774874
|
研究论文 | 本研究评估了YOLOv8深度学习模型在自动检测颧骨骨折方面的性能 | 首次将YOLOv8模型应用于颧骨骨折的自动检测,并针对七种骨折类型进行了详细性能评估 | 研究未提及模型在其他数据集或临床环境中的泛化能力,且样本来源单一 | 评估深度学习模型在自动检测颧骨骨折方面的准确性和有效性 | 颧骨骨折的计算机断层扫描图像 | 计算机视觉 | 颧骨骨折 | 螺旋计算机断层扫描 | YOLOv8 | 图像 | 13,988个轴向切片和14,107个冠状切片 | NA | YOLOv8 | 准确率, 召回率, 平均精度, F1分数, AUC | NA |
| 364 | 2025-12-26 |
Association of a Lifestyle Risk Index With Visceral and Subcutaneous Adipose Tissue in the German National Cohort (NAKO)
2026-Jan, Obesity (Silver Spring, Md.)
DOI:10.1002/oby.70071
PMID:41261047
|
研究论文 | 本研究探讨了生活方式风险指数与内脏和皮下脂肪组织的关系,基于德国国家队列的横断面数据 | 结合多种生活方式因素构建风险指数,并利用深度学习技术从全身MRI中自动分割内脏脂肪组织,分析其与生活方式的关系 | 研究为横断面设计,无法确定因果关系;样本可能受自我报告偏倚影响;BMI可能混淆生活方式与内脏脂肪的关联 | 评估生活方式风险指数与肥胖指标(特别是内脏脂肪组织)的关联 | 德国国家队列中30,920名符合条件的参与者,年龄48.2±12.2岁 | 数字病理学 | 心血管疾病 | 磁共振成像(MRI),深度学习图像分割 | 深度学习模型 | 图像(MRI扫描) | 30,920名参与者(来自超过205,000名合格参与者),其中18,508名有完整数据 | NA | NA | 调整后的几何均值,95%置信区间 | NA |
| 365 | 2025-12-26 |
Effects of disease duration and antipsychotics on brain age in schizophrenia
2026-Jan, Schizophrenia research
IF:3.6Q1
DOI:10.1016/j.schres.2025.11.008
PMID:41274179
|
研究论文 | 本研究探讨了精神分裂症患者大脑加速衰老的现象,并评估了抗精神病药物对此的影响 | 使用两种不同的机器学习模型(包括一种基于Transformer的模型)来增强大脑年龄预测的鲁棒性,并首次在双相情感障碍患者中比较了接受与未接受抗精神病药物治疗对大脑年龄差距的影响 | 研究为横断面设计,无法确定大脑衰老的时间动态,需要纵向研究来澄清 | 调查精神分裂症中大脑加速衰老的进展性以及抗精神病药物的潜在作用 | 首次发作精神病患者、健康对照者以及接受与未接受抗精神病药物治疗的双相情感障碍患者 | 机器学习 | 精神分裂症 | 神经影像学 | Transformer, 深度学习模型 | 神经影像数据 | NA | NA | Transformer, 深度学习模型 | NA | NA |
| 366 | 2025-12-26 |
Deep learning for optical misalignment diagnostics in multi-lens imaging systems
2026-Jan-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.578126
PMID:41442380
|
研究论文 | 本文提出了两种基于深度学习的逆向设计方法,用于仅通过光学测量诊断多镜头成像系统中的光学错位问题 | 开发了两种互补的深度学习模型,利用光线追踪点图或灰度合成相机图像,实现多镜头系统错位的自动化诊断,无需传统专用设备 | NA | 开发自动化、可扩展的光学错位诊断方法,以改进多镜头成像系统的制造和质量控制流程 | 多镜头成像系统,包括6镜头摄影定焦镜头以及两镜头和六镜头系统 | 计算机视觉 | NA | 光线追踪,物理模拟管道 | 深度学习模型 | 光学测量数据,包括光线追踪点图和灰度合成相机图像 | NA | NA | NA | 平均绝对误差(对于横向平移为0.031 mm,对于倾斜为0.011) | NA |
| 367 | 2025-12-25 |
Diabetes and longitudinal changes in deep learning-derived measures of vertebral bone mineral density using conventional CT: the Multi-Ethnic Study of Atherosclerosis
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04995-2
PMID:40728733
|
研究论文 | 本研究探讨了糖尿病与通过常规胸部CT深度学习模型测量的椎体骨密度纵向变化之间的关联,并评估了肾功能对此关系的影响 | 首次在纵向研究中结合深度学习模型从常规CT中提取椎体骨密度,并分析糖尿病状态及肾功能(特别是糖尿病肾病)对骨密度变化的交互影响 | 研究未纳入骨微结构评估或骨折结局数据,且依赖于常规CT而非专用骨密度扫描,可能限制对糖尿病骨折风险机制的全面理解 | 探究糖尿病与椎体骨密度纵向变化的关系,并评估肾功能在此过程中的调节作用 | 来自动脉粥样硬化多种族研究肺研究的1046名参与者,包括糖尿病患者与非糖尿病患者 | 数字病理学 | 糖尿病 | 常规胸部CT扫描 | 深度学习模型 | 医学影像(CT图像) | 1046名参与者,在两次检查(2010-2012年和2016-2018年)中进行纵向测量 | NA | NA | 骨密度变化率(β值,单位mg/cm3/年)及95%置信区间 | NA |
| 368 | 2025-12-25 |
Automated 3D segmentation of rotator cuff muscle and fat from longitudinal CT for shoulder arthroplasty evaluation
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04991-6
PMID:40782188
|
研究论文 | 本研究开发并验证了一种用于在肩关节置换术患者的纵向CT扫描中自动三维分割肩袖肌肉的深度学习模型,以量化肌肉体积和脂肪分数 | 首次开发了用于肩关节置换术患者纵向CT扫描中肩袖肌肉自动三维分割的深度学习模型,实现了肌肉体积和脂肪分数的自动化量化分析 | 模型仅在53名肩关节置换术患者的CT扫描数据上进行训练和测试,样本量相对有限;研究主要关注肩袖肌肉,未涉及其他相关组织结构 | 开发自动化工具用于肩关节置换术患者的肩袖肌肉健康评估,以支持患者选择、康复规划和手术决策 | 接受全肩关节置换术的患者 | 医学图像分析 | 肩关节疾病 | CT扫描 | 深度学习 | 3D CT图像 | 53名患者用于模型开发,172名患者用于量化分析 | 未明确说明 | DeepLabV3+, ResNet50 | Dice相似系数, 平均对称表面距离, 95百分位Hausdorff距离, 相对绝对体积差异 | NA |
| 369 | 2025-12-25 |
Objective Assessment of Disorders of Consciousness Based on EEG Temporal and Spectral Features
2026-Jan, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500674
PMID:40985067
|
研究论文 | 本研究基于听觉oddball范式采集的EEG数据,通过提取时频域、连接性和非线性动力学特征,系统比较多种机器学习和深度学习分类器,以客观评估意识障碍(DOC)患者的意识状态 | 首次在任务态EEG数据中综合识别多域生物标志物,并系统比较包括SVM、RF、XGBoost、EEGNet和ShallowConvNet在内的多种分类器,提出集成投票模型提升分类性能 | 未提及样本量的具体限制或外部验证结果,可能影响模型的泛化能力 | 开发基于任务态EEG数据的意识障碍(DOC)客观评估方法 | 最小意识状态(MCS)患者、植物状态(VS)患者和健康对照组(HC) | 机器学习 | 意识障碍 | EEG(脑电图) | SVM, LDA, RF, XGBoost, DT, CNN | EEG信号 | 未明确提及具体样本数量 | NA | EEGNet, ShallowConvNet | 分类性能(未指定具体指标如准确率、F1分数等) | NA |
| 370 | 2025-12-25 |
Trabecular bone analysis: ultra-high-resolution CT goes far beyond high-resolution CT and gets closer to micro-CT (a study using Canon Medical CT devices)
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-05001-5
PMID:40738977
|
研究论文 | 本研究评估了Canon Medical不同分辨率CT(高分辨率、超高分辨率、超超高分辨率)在测量骨小梁微结构参数方面的准确性,以微CT为参考标准 | 首次系统比较了超高分辨率CT和超超高分辨率CT在骨小梁分析中的性能,并评估了深度学习重建技术对测量结果的影响 | 研究样本量较小(16个尸体胫骨远端骨骺),且仅使用单一品牌(Canon Medical)的CT设备,可能限制结果的普适性 | 评估不同分辨率CT技术在骨小梁微结构参数测量中的准确性 | 尸体胫骨远端骨骸的骨小梁微结构 | 医学影像 | NA | CT成像(高分辨率CT、超高分辨率CT、超超高分辨率CT)、深度学习重建、微CT | NA | CT图像 | 16个尸体胫骨远端骨骺 | NA | NA | 骨小梁厚度、骨小梁分离度、骨体积/总体积的测量值与微CT参考值的比值 | NA |
| 371 | 2025-12-25 |
Gastric Neoplasm Detection at Contrast-enhanced CT with Deep Learning
2026-Jan, Radiology. Artificial intelligence
DOI:10.1148/ryai.250145
PMID:41295087
|
研究论文 | 本研究开发并验证了一种名为GANDA的深度学习模型,用于在临床常规增强CT中自动检测、诊断和分割胃部肿瘤 | 提出了一种联合分割和分类的三维深度学习模型(GANDA),用于胃部肿瘤的自动化检测与诊断,并在多个内部、外部及真实世界测试队列中验证了其性能,且诊断准确率显著高于经验丰富的放射科医生 | 研究为回顾性设计;模型在内部测试队列中的分割性能(Dice系数)对于胃癌和非胃癌分别为0.52和0.45,仍有提升空间 | 开发并验证一种基于深度学习的自动化工具,用于在增强CT图像中检测、诊断和分割胃部肿瘤 | 胃部肿瘤(胃癌及非胃癌)患者 | 数字病理学 | 胃癌 | 对比增强CT | 深度学习模型 | 三维CT图像 | 共4606名患者(来自多个中心,时间跨度为2007年至2023年) | NA | 联合分割和分类的三维深度学习模型 | 敏感性, 特异性, 准确率, 受试者工作特征分析, Dice系数 | NA |
| 372 | 2025-12-25 |
Transformer-based multimodal fusion model predicts early hematoma expansion in spontaneous cerebral hemorrhage: A multicenter study
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112465
PMID:41135231
|
研究论文 | 本研究开发了一种基于Transformer的多模态融合模型,用于预测自发性脑出血患者的早期血肿扩张 | 首次将深度学习、影像组学和临床因素通过Transformer架构进行多模态融合,用于早期血肿扩张的预测 | 样本量相对有限(共465例),且为回顾性研究,需要进一步前瞻性验证 | 开发精准预测自发性脑出血患者早期血肿扩张的预测模型 | 自发性脑出血患者 | 医学影像分析 | 脑出血 | 非增强计算机断层扫描 | Transformer, SVM, LR, RF, AdaBoost | 图像, 临床数据 | 465例患者(训练集315例,内部测试集80例,外部测试集70例) | NA | Transformer | AUC, 校准曲线 | NA |
| 373 | 2025-12-25 |
Dual energy CT and deep learning for an automated volumetric segmentation of the major intracranial tissues: Feasibility and initial findings
2026-Jan, Medical physics
IF:3.2Q1
DOI:10.1002/mp.70217
PMID:41423435
|
研究论文 | 本研究评估了使用深度学习模型和双能CT虚拟单能图像对颅内灰质、白质和脑脊液进行自动体积分割的可行性 | 利用双能CT的虚拟单能图像(VMI)和深度学习模型(特别是U-Net++ (Aug))进行颅内组织分割,相比传统CT方法,通过光谱信息增强了分割性能 | 样本量较小(仅26名患者),且研究为初步可行性验证,需要更大规模的研究来确认结果的普适性 | 评估基于CT和深度学习的颅内组织自动体积分割的可行性,以在MRI不适用时改善患者管理 | 颅内灰质(GM)、白质(WM)和脑脊液(CSF) | 计算机视觉 | NA | 双能CT、虚拟单能成像(VMI)、T1加权磁共振成像 | 深度学习 | 图像 | 26名患者(21名用于训练/验证,5名用于测试) | NA | U-Net++, U-Net | Dice相似系数(DSC)、体积准确度 | NA |
| 374 | 2025-12-25 |
Artificial intelligence in modern clinical practice (Review)
2026 Jan-Feb, Medicine international
DOI:10.3892/mi.2025.289
PMID:41424576
|
综述 | 本文综述了人工智能在现代临床实践中的应用、机遇与挑战 | 系统整合了近期研究成果,全面探讨了AI在临床决策支持、影像分析、精准医疗等领域的角色,并强调了实施中的关键障碍 | 作为综述文章,未进行原始数据收集或模型验证,主要依赖现有文献分析 | 讨论人工智能在现代临床实践中的作用,并突出未来的机遇与挑战 | 临床实践中的AI应用,包括医生、患者及医疗系统 | NA | NA | NA | NA | 临床数据 | NA | NA | NA | NA | NA |
| 375 | 2025-12-25 |
Beyond Accuracy: Enhancing Parkinson's Diagnosis with Uncertainty Quantification of Machine Learning Models
2026, Artificial intelligence in healthcare : second International Conference, AIiH 2025, Cambridge, UK, September 8-10, 2025, Proceedings. Part I. International Conference on Artificial Intelligence in Healthcare (2nd : 2025 : Cambridge, Eng...
DOI:10.1007/978-3-032-00652-3_3
PMID:41425112
|
研究论文 | 本研究评估了三种不确定性量化方法在帕金森病诊断中的表现,旨在提升机器学习模型的可靠性 | 首次在帕金森病诊断中系统比较了蒙特卡洛Dropout、深度证据分类和贝叶斯神经网络三种不确定性量化方法,并公开了完整代码 | 研究仅使用了三种特定类型的数据集(手指敲击、面部表情、语音模式),未涵盖其他临床数据 | 通过不确定性量化技术提高帕金森病诊断中机器学习模型的可靠性和安全性 | 帕金森病患者 | 机器学习 | 帕金森病 | NA | 贝叶斯神经网络 | 手指敲击数据、面部表情数据、语音模式数据 | 三个数据集 | NA | NA | 诊断准确性、不确定性评估 | NA |
| 376 | 2025-12-25 |
Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
2026, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-032-05162-2_23
PMID:41425911
|
研究论文 | 本文提出了一种基于核心-外围原则引导的状态空间模型(CP-SSM),用于功能连接组分类,以改进神经影像学中的脑网络分析 | 提出了结合选择性状态空间模型Mamba(具有线性复杂度)与受脑网络核心-外围组织启发的混合专家模型CP-MoE的创新框架,以高效捕获功能脑网络中的长程依赖关系 | 仅在ABIDE和ADNI两个基准fMRI数据集上进行了评估,未在其他脑疾病或更大规模数据集上验证泛化能力 | 开发一种高效且有效的计算模型,用于功能连接组分类,以辅助神经影像学为基础的神经系统疾病诊断 | 人类功能脑网络(功能连接组) | 机器学习 | 神经系统疾病 | 功能磁共振成像 | 状态空间模型, 混合专家模型 | 功能连接组数据(源自fMRI) | 两个基准fMRI数据集(ABIDE和ADNI),具体样本数未在摘要中明确说明 | NA | Mamba(选择性状态空间模型), CP-MoE(核心-外围引导的混合专家) | 分类性能(具体指标未在摘要中明确说明) | NA |
| 377 | 2025-12-25 |
Domain-Adaptive Diagnosis of Lewy Body Disease with Transferability Aware Transformer
2026, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
DOI:10.1007/978-3-032-04981-0_18
PMID:41426524
|
研究论文 | 本文提出了一种可迁移性感知的Transformer模型,用于在数据稀缺和领域偏移场景下,从阿尔茨海默病数据中迁移知识以增强路易体病的诊断 | 首次探索在数据稀缺和领域偏移条件下,从阿尔茨海默病到路易体病的领域自适应研究,并设计了基于注意力机制的Transformer模型来分配高权重给疾病可迁移特征,抑制领域特定特征 | 数据稀缺可能限制模型的泛化能力,且领域偏移问题虽被缓解但未完全消除 | 通过领域自适应方法,利用丰富的阿尔茨海默病数据来提升路易体病的诊断准确性 | 路易体病和阿尔茨海默病的患者数据,特别是结构磁共振成像衍生的结构连接性数据 | 数字病理学 | 路易体病 | 结构磁共振成像 | Transformer | 图像 | NA | NA | Transformer | 诊断准确性 | NA |
| 378 | 2025-12-25 |
An Enhanced Random Convolutional Kernel Transform for Diverse and Robust Feature Extraction from High-Density Surface Electromyograms for Cross-day Gesture Recognition
2026-Jan, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500625
PMID:41059625
|
研究论文 | 本文提出了一种名为EMG-ROCKET的增强型随机卷积核变换方法,用于从高密度表面肌电图中提取多样且鲁棒的特征,以提升跨日手势识别的性能 | 提出了EMG-ROCKET方法,集成了随机通道融合和增强聚合函数,以增强对HD-sEMG跨日信号变化的鲁棒性,无需先验知识或大量训练 | 未明确提及方法在更大规模或更多样化数据集上的泛化能力,也未讨论计算效率的详细分析 | 开发一种无需训练、鲁棒的特征提取方法,以解决高密度表面肌电图在手势识别中特征多样性有限和数据依赖性高的问题 | 高密度表面肌电图信号 | 机器学习 | NA | 高密度表面肌电图 | Ridge分类器 | 肌电图信号 | 在两个HD-sEMG数据集上进行评估,具体样本数量未明确说明 | NA | EMG-ROCKET(基于ROCKET的增强版本) | 准确率 | NA |
| 379 | 2025-12-24 |
Artificial intelligence revolutionize food detection? Vision, olfaction and taste integrated with machine learning/deep learning in food detection
2026-Jan-15, Food chemistry
IF:8.5Q1
DOI:10.1016/j.foodchem.2025.147377
PMID:41365156
|
综述 | 本文综述了人工智能(AI)如何通过机器学习(ML)和深度学习(DL)技术,整合视觉、嗅觉和味觉感知系统,革新食品检测领域 | 系统阐述了AI在食品检测中实现特征自动提取、模式识别和决策反馈的机制,并展望了多模态数据融合和大语言模型(LLMs)的潜在应用 | 总结了AI在食品检测中仍面临的主要挑战 | 阐明AI在食品检测领域的理论框架和技术范式变革,分析其优势与局限,并展望未来发展方向 | 食品检测技术 | 机器学习 | NA | 计算机视觉、电子鼻、电子舌 | 机器学习、深度学习 | 复杂信号(视觉、嗅觉、味觉数据) | NA | NA | NA | 检测精度、鲁棒性 | NA |
| 380 | 2025-12-24 |
Surface-Enhanced Raman Spectroscopy Semi-Quantitative Molecular Profiling with a Convolutional Neural Network
2026-Jan, Applied spectroscopy
IF:2.2Q2
DOI:10.1177/00037028251377474
PMID:40887786
|
研究论文 | 本研究开发了一种结合表面增强拉曼光谱与卷积神经网络和支持向量回归的层次分析框架,用于复杂环境中多种分子的半定量分析 | 提出了一种集成深度学习和回归技术的层次分析框架,首次将多标签CNN用于SERS光谱中结构相似分析物的识别,并结合SVR进行半定量浓度比测定 | 目前仅验证了短链脂肪酸二元混合物,尚未扩展到更复杂的多组分系统或临床样本 | 解决复杂环境中多种分子物种的识别和定量分析挑战 | 短链脂肪酸(SCFAs)作为代表性生物分子靶标 | 机器学习 | NA | 表面增强拉曼光谱(SERS) | CNN, SVR | 光谱数据 | NA | NA | 卷积神经网络 | 分类准确率 | NA |