本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1141 | 2026-01-19 |
Artificial intelligence in mitotic checkpoint modeling: transforming our understanding of cellular division through machine learning and predictive biology
2026-Jan-07, Briefings in bioinformatics
IF:6.8Q1
DOI:10.1093/bib/bbaf729
PMID:41537307
|
综述 | 本文综述了人工智能在细胞有丝分裂检查点建模中的应用,通过机器学习和预测生物学方法,改变了我们对细胞分裂的理解 | 利用Transformer架构预测纺锤体组装检查点参与度准确率超过95%,图神经网络在亚像素分辨率解码动粒-微管动力学,以及混合AI-机制模型揭示隐藏反馈回路 | NA | 通过人工智能方法,提升对有丝分裂检查点复杂非线性动力学的理解,并推动其在癌症等增殖性疾病精准医疗中的应用 | 细胞有丝分裂检查点网络,包括纺锤体组装检查点和动粒-微管动力学 | 机器学习和预测生物学 | 癌症等增殖性疾病 | 多组学数据整合 | Transformer, 图神经网络, 混合AI-机制模型 | 多组学数据 | NA | NA | Transformer, 图神经网络 | 准确率 | NA |
| 1142 | 2026-01-19 |
DynaRepo: the repository of macromolecular conformational dynamics
2026-Jan-06, Nucleic acids research
IF:16.6Q1
DOI:10.1093/nar/gkaf1130
PMID:41231767
|
研究论文 | 本文介绍了DynaRepo,一个包含约450个复合物和约270个单链蛋白质的分子构象动力学数据库,旨在支持基于动力学的深度学习研究 | 通过整合PDBbind、SAbDab和基准数据集,提供大规模分子动力学模拟数据,弥补了静态结构研究方法的不足,为动态行为分析提供了数据基础 | NA | 构建一个用于研究大分子构象动力学的数据库,以支持数据驱动的深度学习框架开发 | 蛋白质、RNA和DNA及其复合物,包括抗体-抗原识别、内在无序蛋白质和蛋白质-核酸结合等动态相互作用 | 计算生物学 | NA | 分子动力学模拟 | NA | 分子动力学模拟数据 | 约450个复合物和约270个单链蛋白质,每个复合物进行三次500纳秒模拟,总计超过1100微秒数据 | NA | NA | NA | NA |
| 1143 | 2026-01-19 |
Neurosymbolic AI Framework for Explainable Retinal Disease Classification From OCT Images
2026-Jan-05, Translational vision science & technology
IF:2.6Q2
DOI:10.1167/tvst.15.1.6
PMID:41533847
|
研究论文 | 提出了一种神经符号AI框架,用于从OCT图像中解释性分类视网膜疾病 | 将卷积神经网络与基于专家临床规则的符号推理层相结合,提高了诊断性能并提供了透明、临床可解释的决策 | 未明确提及 | 提高视网膜疾病分类的准确性和可解释性,以支持有效的治疗和临床决策 | 视网膜疾病,包括干性年龄相关性黄斑变性、湿性AMD、视网膜前膜、全层黄斑裂孔、板层黄斑裂孔和中心性浆液性脉络膜视网膜病变 | 计算机视觉 | 视网膜疾病 | 光学相干断层扫描 | CNN | 图像 | 10,846张OCT图像 | NA | CNN | 宏精确率, 召回率, F1分数 | NA |
| 1144 | 2026-01-19 |
Artificial intelligence-enabled electrocardiography from scientific research to clinical application
2026-Jan, EMBO molecular medicine
IF:9.0Q1
DOI:10.1038/s44321-025-00351-y
PMID:41326714
|
综述 | 本文综述了人工智能在心电图分析中的革命性应用,从科学研究到临床实践的转变 | AI-ECG能够直接从原始信号处理复杂高维数据,揭示传统方法常遗漏的模式,如无症状低射血分数和阵发性心房颤动的迹象 | NA | 探讨人工智能如何改进心电图在心血管诊断中的应用,包括诊断、风险分层和社区筛查 | 心电图数据及其在心血管疾病诊断中的应用 | 机器学习 | 心血管疾病 | 心电图 | 深度学习 | 信号数据 | NA | NA | NA | NA | NA |
| 1145 | 2026-01-19 |
Automated detection of chewing movements in videofluoroscopic swallowing studies using deep learning for landmark detection and motion analysis
2026-Jan-01, Computers in biology and medicine
IF:7.0Q1
DOI:10.1016/j.compbiomed.2025.111361
PMID:41330067
|
研究论文 | 本研究提出首个全自动分析视频荧光吞咽研究中咀嚼相关下颌运动的流程 | 首次开发了用于视频荧光吞咽研究中咀嚼运动自动检测的全流程系统,整合了关键解剖点检测、视频分割和运动分类三个模块 | 未明确提及具体的数据集规模限制或算法在特定人群中的泛化性能 | 开发自动化工具以评估咀嚼功能,并支持将咀嚼分析整合到标准临床协议中 | 健康参与者和吞咽困难患者的视频荧光吞咽研究数据 | 计算机视觉 | 吞咽障碍 | 视频荧光吞咽研究 | 深度学习 | 视频 | 来自多项临床研究的数据集,包含健康参与者和吞咽困难患者 | NA | NA | NA | NA |
| 1146 | 2026-01-19 |
Clinical decisions in Orthodontics using x-ray-based images and artificial intelligence approaches: a scoping review
2026, Dental press journal of orthodontics
|
综述 | 本文是一篇范围综述,探讨了基于X射线图像和人工智能方法在正畸临床决策中的应用 | 系统性地回顾了AI在正畸诊断和治疗规划中的应用,特别是聚焦于X射线成像,并识别了AI在颞下颌关节骨关节炎、骨骼成熟度分类、阻塞性睡眠呼吸暂停和正颌手术需求等关键领域的最佳应用 | 仅纳入了截至2021年10月的英文文献,可能遗漏了最新研究或非英语文献 | 审查AI模型何时能增强正畸诊断和治疗规划中的临床决策过程 | 正畸领域的临床决策,特别是基于X射线图像的诊断和治疗规划 | 计算机视觉 | 正畸相关疾病 | X射线成像 | 深度学习 | X射线图像 | NA | NA | NA | NA | NA |
| 1147 | 2026-01-19 |
Automated Learning of a Dense Manifold of Electronic States and Electronic Energy Transfer and Reactions in Singlet O Collisions with N2
2026, Research (Washington, D.C.)
DOI:10.34133/research.0992
PMID:41541569
|
研究论文 | 本文提出了一种深度学习框架,用于自动发现和拟合单线态氧原子与氮分子碰撞的兼容势能矩阵,并开发了新的动力学方法以计算电子非绝热截面 | 应用深度神经网络自动学习密集电子态流形,并提出了渐近扩展的κCSDM半经典动力学方法,解决了相互作用原子-双原子系统与完全分离终态之间对称性冲突的问题 | NA | 模拟极端条件下的电子能量转移,涉及化学、物理和航空航天工程领域 | 单线态氧原子与氮分子的碰撞系统 | 机器学习 | NA | 深度神经网络,半经典动力学方法 | 深度神经网络 | 势能矩阵,势能面梯度 | NA | NA | NA | NA | NA |
| 1148 | 2026-01-19 |
Differentiating cytology of pancreatic ductal adenocarcinoma and pancreatic neuroendocrine tumors by EUS-FNA through hyperspectral imaging technology combined with artificial intelligence
2026, Therapeutic advances in gastroenterology
IF:3.9Q1
DOI:10.1177/17562848251414188
PMID:41541641
|
研究论文 | 本研究开发了一种基于高光谱成像技术和卷积神经网络的模型,用于辅助诊断胰腺导管腺癌和胰腺神经内分泌肿瘤的液基细胞学标本 | 结合高光谱成像技术捕获传统成像无法获取的光谱特征,并利用改进的ResNet18模型进行分析,通过属性引导因子可视化技术解释模型决策过程 | 样本量相对较小(59名患者),模型性能需在更大规模数据集中进一步验证 | 开发人工智能辅助诊断工具,以准确区分胰腺导管腺癌和胰腺神经内分泌肿瘤 | 通过内镜超声引导细针穿刺获取的胰腺导管腺癌和胰腺神经内分泌肿瘤液基细胞学标本 | 数字病理学 | 胰腺癌 | 高光谱成像, 内镜超声引导细针穿刺, 液基细胞学 | CNN | 高光谱图像 | 59名患者,共2014张高光谱图像 | NA | 改进的ResNet18 | 灵敏度, 特异度, 准确率, AUC | NA |
| 1149 | 2026-01-18 |
Deep learning-based automatic adenoid segmentation and a novel volume-based index for adenoid hypertrophy assessment
2026-Jan-17, BMC oral health
IF:2.6Q1
DOI:10.1186/s12903-026-07675-2
PMID:41545817
|
研究论文 | 本研究开发了一种基于深度学习的自动腺样体分割方法,并提出了一个新的三维腺样体-鼻咽比率(3D-AN)用于评估腺样体肥大 | 首次利用深度学习从CBCT扫描中自动分割腺样体,并引入基于体积比的三维腺样体-鼻咽比率(3D-AN)作为评估鼻咽气道阻塞的新定量指标 | 研究为回顾性设计,样本量有限,且3D-AN与儿童OSA的相关性仅在初步分析中展示,需要进一步验证 | 开发一种自动、准确的腺样体分割方法,并建立一个新的定量指标来评估腺样体肥大引起的鼻咽气道阻塞 | 儿童阻塞性睡眠呼吸暂停(OSA)患者 | 数字病理学 | 儿童阻塞性睡眠呼吸暂停 | 锥形束计算机断层扫描(CBCT) | 深度学习 | 医学影像(CBCT扫描) | 数据集1:63名儿童OSA患者的126次CBCT扫描(腺样体切除术前和术后);数据集2:26名儿童OSA患者的术后CBCT扫描;数据集3:161名同时进行多导睡眠图和CBCT检查的儿童患者 | PyTorch | SegResNet | Dice相似系数, 相对体积误差 | NA |
| 1150 | 2026-01-18 |
Recognition of Normal Fetal Echocardiograms Based on an Explainable Denoising Deep Learning Model
2026-Jan-17, Journal of clinical ultrasound : JCU
IF:1.2Q3
DOI:10.1002/jcu.70183
PMID:41546466
|
研究论文 | 本研究提出了一种基于可解释去噪深度学习模型GSCAViT,用于分类正常胎儿超声心动图 | 提出了新颖的去噪引导GSCA模块,结合Vision Transformer架构,提升了图像质量和模型可解释性 | 研究为回顾性研究,样本量相对有限(358例检查),未在外部验证集上广泛测试 | 评估GSCAViT模型在分类正常胎儿超声心动图方面的性能 | 胎儿心脏超声检查图像 | 计算机视觉 | 心血管疾病 | 超声心动图 | Vision Transformer | 图像 | 358例胎儿心脏超声检查,共2501张图像 | NA | GSCAViT (Grouped Shared Convolutional Attention Vision Transformer) | 准确率, 精确率, 召回率, F1分数, 对比噪声比, 峰值信噪比 | NA |
| 1151 | 2026-01-18 |
Bathymetry of the Philippine sea with convolution neural network from multisource marine geodetic data
2026-Jan-16, iScience
IF:4.6Q1
DOI:10.1016/j.isci.2025.114285
PMID:41541674
|
研究论文 | 本研究开发了一种基于深度学习的菲律宾海高分辨率水深预测方法,旨在利用多源海洋大地测量数据提高海底深度估计的准确性 | 通过整合多种辅助特征(如重力异常、海底坡度等)并采用卷积神经网络,显著提升了水深预测的精度,展示了深度学习在大规模、低成本海底测绘中的潜力 | NA | 提高菲律宾海高分辨率水深预测的准确性 | 菲律宾海的海底深度 | 计算机视觉 | NA | 多源海洋大地测量数据整合 | CNN | 地理坐标与多源地球物理数据 | 基于8×8弧分区域提取的训练点数据 | NA | 卷积神经网络 | 预测精度 | NA |
| 1152 | 2026-01-18 |
Fabrication of NbC/GaN Nanofilm Sensor via Photolithography and its Investigation as a Sensor for Trimethylamine Mixed Gas Detection Using Dual-Feature Extraction and Deep Learning
2026-Jan-16, ACS sensors
IF:8.2Q1
DOI:10.1021/acssensors.5c02507
PMID:41543399
|
研究论文 | 本研究通过光刻技术制备了NbC/GaN纳米薄膜传感器,结合双特征提取与深度学习算法,实现了对三甲胺混合气体的高精度检测 | 创新性地采用光刻技术优化NbC纳米薄膜的均匀性与厚度,并首次结合KPCA与多项式特征工程的双特征提取方法,提升传感器阵列数据分析能力 | 未明确说明传感器对其他干扰气体的交叉敏感性测试,且深度学习模型在更复杂气体环境中的泛化能力有待进一步验证 | 开发用于混合气体检测的高性能纳米薄膜传感器系统 | 三甲胺(TMA)混合气体 | 传感器技术 | NA | 光刻与蚀刻技术 | 深度学习 | 传感器阵列数据 | NA | NA | NA | 准确率 | NA |
| 1153 | 2026-01-18 |
Order-Aware Deep Learning for Drug Combination Benefit Prediction in Cancer Cell Lines
2026-Jan-16, IEEE journal of biomedical and health informatics
IF:6.7Q1
DOI:10.1109/JBHI.2026.3650933
PMID:41543946
|
研究论文 | 本文提出了一种名为OrderCombo的新型顺序感知深度学习模型,用于预测癌症细胞系中药物的组合效益 | 提出了一种新颖的顺序感知深度学习模型,通过结合预训练的化学语言模型、组学导向的线性网络和混合编码器来提取药物和细胞系表征,并设计了顺序对比损失来促进判别性嵌入空间并保持类别顺序性 | NA | 加速治疗性药物组合的发现,预测癌症细胞系中药物的组合效益 | 药物组合和癌症细胞系 | 机器学习 | 癌症 | NA | 深度学习 | 化学数据、组学数据 | 大规模组合效益数据集 | NA | 混合编码器(结合基于连接和基于注意力的交互) | 预测准确率 | NA |
| 1154 | 2026-01-18 |
Highly Undersampled MRI Reconstruction via a Single Posterior Sampling of Diffusion Models
2026-Jan-16, IEEE transactions on medical imaging
IF:8.9Q1
DOI:10.1109/TMI.2026.3654585
PMID:41543953
|
研究论文 | 提出一种基于单步扩散模型的快速MRI重建框架SSDM-MRI,用于从高度欠采样的k空间数据中恢复图像 | 通过迭代选择性蒸馏算法和捷径反向采样策略,将扩散模型蒸馏为单步推理模型,显著缩短了重建时间 | 未明确说明模型在更广泛数据集或更高加速因子下的泛化能力 | 解决高加速因子下MRI图像重建质量下降和扩散模型推理时间长的问题 | MRI图像 | 医学影像重建 | NA | 扩散模型 | 条件扩散模型 | MRI图像 | 公开fastMRI脑部和膝盖图像数据集,以及内部多回波GRE(QSM)受试者数据 | NA | U-net | PSNR, SSIM | NA |
| 1155 | 2026-01-18 |
Learning-Based Multi-View Stereo: A Survey
2026-Jan-16, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2026.3654665
PMID:41543950
|
综述 | 本文对基于学习的多视图立体视觉(MVS)方法进行了全面综述 | 系统性地将基于学习的MVS方法分类为基于深度图、基于体素、基于NeRF、基于3D高斯泼溅和大规模前馈方法,并重点分析了主流方法 | 作为综述文章,不涉及具体实验验证,主要依赖现有文献和基准测试结果 | 综述基于学习的多视图立体视觉方法的研究进展、性能比较和未来方向 | 多视图立体视觉算法及其在3D重建中的应用 | 计算机视觉 | NA | 多视图立体视觉 | 深度学习 | 多视角图像 | NA | NA | NA | 基准测试性能 | NA |
| 1156 | 2026-01-18 |
Institution-specific pre-treatment quality assurance control and specification limits: a tool to implement a new formalism and criteria optimization using statistical process control and heuristic methods
2026-Jan-16, Physics in medicine and biology
IF:3.3Q1
DOI:10.1088/1361-6560/ae399f
PMID:41544384
|
研究论文 | 本研究开发了一种基于统计过程控制和启发式方法的新形式化工具,用于优化VMAT预治疗质量保证的控制和规格限 | 提出了一种结合统计过程控制与启发式方法的新形式化框架,用于确定机构特定的控制和规格限,并开发了开源软件工具以促进临床实施 | 研究基于回顾性数据,可能未涵盖所有临床场景;高复杂度计划的严格标准临床可接受性需进一步验证 | 优化VMAT预治疗质量保证流程,通过建立机构特定的控制和规格限来提高计划复杂度的管理效率 | 350个VMAT治疗计划,涵盖脑部、前列腺、盆腔和头颈部等不同复杂度的治疗部位 | 医学物理与放射治疗 | NA | VMAT预治疗质量保证,伽马指数分析 | NA | 放射治疗计划数据 | 350个VMAT计划 | 自定义软件(基于统计过程控制和启发式方法) | NA | 伽马指数通过率,平均伽马指数 | NA |
| 1157 | 2026-01-18 |
Deep learning algorithm for semiquantification of spinal inflammation in axial spondyloarthritis
2026-Jan-16, RMD open
IF:5.1Q1
DOI:10.1136/rmdopen-2025-006403
PMID:41545311
|
研究论文 | 本研究开发了一种基于注意力U-Net的深度学习算法,用于对中轴型脊柱关节炎患者脊柱炎症进行半定量评估 | 利用注意力U-Net模型实现脊柱炎症的自动识别和定位,首次将深度学习应用于SPARCC评分的半定量分析 | 研究仅基于330名患者数据,未在外部验证集上测试模型泛化能力 | 开发深度学习算法对中轴型脊柱关节炎的脊柱炎症进行半定量评估 | 中轴型脊柱关节炎患者的脊柱MRI图像 | 数字病理学 | 脊柱关节炎 | MRI STIR序列 | CNN | 图像 | 330名参与者 | NA | 注意力U-Net | 灵敏度, 特异性, 准确率, Dice系数, ICC, Pearson系数 | NA |
| 1158 | 2026-01-18 |
Hundred-Nanosecond Equivalent Pixel Dwell Time for Deep-Tissue 3D Three-Photon Fluorescence Microscopy via Sparse X-Y-Z Reconstruction
2026-Jan-16, Small methods
IF:10.7Q1
DOI:10.1002/smtd.202501513
PMID:41546413
|
研究论文 | 本文提出了一种名为DeepR-SXYZ的深度学习框架,通过稀疏X-Y-Z重建,实现了百纳秒级等效像素驻留时间,用于深层组织三维三光子荧光显微镜成像 | 提出了一种结合卷积神经网络和结构动态注意力增强Transformer的深度学习框架,实现了从稀疏采样的低分辨率体积扫描数据中准确重建高分辨率三维体积,在X-Y平面成像上实现了8.8倍加速和超过60%的Z轴层恢复 | 未明确说明 | 解决三光子荧光显微镜在成像速度与空间分辨率之间的权衡问题,实现高速、低光毒性的深层组织三维成像 | 脑血管系统和肌肉巨噬细胞 | 计算机视觉 | NA | 三光子荧光显微镜 | CNN, Transformer | 图像 | NA | NA | CNN与结构动态注意力增强Transformer | X-Y平面成像加速倍数, Z轴层恢复率 | NA |
| 1159 | 2026-01-18 |
Explainable AI-assisted hybrid self-organising maps and deep learning algorithms for detecting pistachio adulteration with peas
2026-Jan-15, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment
DOI:10.1080/19440049.2025.2597288
PMID:41542878
|
研究论文 | 本研究开发了一种可解释的AI辅助混合模型,结合自组织映射和深度学习算法,用于检测开心果中掺杂豌豆的掺假行为 | 提出了一种新颖的混合方法,将无监督学习的自组织映射与有监督学习的卷积神经网络相结合,首次将高维光谱数据转换为二维图像进行掺假检测 | 研究仅针对开心果与豌豆的特定掺假组合,掺假比例范围有限(0%-60%),未涉及其他常见掺假物或更复杂的混合情况 | 开发一种基于人工智能的食品掺假检测方法,实现开心果产品的快速、准确质量监控 | 生开心果样品及其与干豌豆的掺假混合物 | 计算机视觉 | NA | 拉曼光谱分析 | SOM, CNN | 光谱数据,图像数据 | 18,000个实验室数据点(来自含0%-60%豌豆掺假比例的开心果样品) | NA | 4层CNN架构 | 准确率 | NA |
| 1160 | 2026-01-18 |
Less Noise, More Confidence: Deep Learning Denoising Algorithm for Coronary Stenosis Assessment in pre-TAVI CT Imaging
2026-Jan-15, Academic radiology
IF:3.8Q1
DOI:10.1016/j.acra.2025.12.052
PMID:41545257
|
NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |