深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202601-202601] [清除筛选条件]
当前共找到 1919 篇文献,本页显示第 1721 - 1740 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
1721 2025-12-25
Automated 3D segmentation of rotator cuff muscle and fat from longitudinal CT for shoulder arthroplasty evaluation
2026-Jan, Skeletal radiology IF:1.9Q3
研究论文 本研究开发并验证了一种用于在肩关节置换术患者的纵向CT扫描中自动三维分割肩袖肌肉的深度学习模型,以量化肌肉体积和脂肪分数 首次开发了用于肩关节置换术患者纵向CT扫描中肩袖肌肉自动三维分割的深度学习模型,实现了肌肉体积和脂肪分数的自动化量化分析 模型仅在53名肩关节置换术患者的CT扫描数据上进行训练和测试,样本量相对有限;研究主要关注肩袖肌肉,未涉及其他相关组织结构 开发自动化工具用于肩关节置换术患者的肩袖肌肉健康评估,以支持患者选择、康复规划和手术决策 接受全肩关节置换术的患者 医学图像分析 肩关节疾病 CT扫描 深度学习 3D CT图像 53名患者用于模型开发,172名患者用于量化分析 未明确说明 DeepLabV3+, ResNet50 Dice相似系数, 平均对称表面距离, 95百分位Hausdorff距离, 相对绝对体积差异 NA
1722 2025-12-25
Objective Assessment of Disorders of Consciousness Based on EEG Temporal and Spectral Features
2026-Jan, International journal of neural systems IF:6.6Q1
研究论文 本研究基于听觉oddball范式采集的EEG数据,通过提取时频域、连接性和非线性动力学特征,系统比较多种机器学习和深度学习分类器,以客观评估意识障碍(DOC)患者的意识状态 首次在任务态EEG数据中综合识别多域生物标志物,并系统比较包括SVM、RF、XGBoost、EEGNet和ShallowConvNet在内的多种分类器,提出集成投票模型提升分类性能 未提及样本量的具体限制或外部验证结果,可能影响模型的泛化能力 开发基于任务态EEG数据的意识障碍(DOC)客观评估方法 最小意识状态(MCS)患者、植物状态(VS)患者和健康对照组(HC) 机器学习 意识障碍 EEG(脑电图) SVM, LDA, RF, XGBoost, DT, CNN EEG信号 未明确提及具体样本数量 NA EEGNet, ShallowConvNet 分类性能(未指定具体指标如准确率、F1分数等) NA
1723 2025-12-25
Trabecular bone analysis: ultra-high-resolution CT goes far beyond high-resolution CT and gets closer to micro-CT (a study using Canon Medical CT devices)
2026-Jan, Skeletal radiology IF:1.9Q3
研究论文 本研究评估了Canon Medical不同分辨率CT(高分辨率、超高分辨率、超超高分辨率)在测量骨小梁微结构参数方面的准确性,以微CT为参考标准 首次系统比较了超高分辨率CT和超超高分辨率CT在骨小梁分析中的性能,并评估了深度学习重建技术对测量结果的影响 研究样本量较小(16个尸体胫骨远端骨骺),且仅使用单一品牌(Canon Medical)的CT设备,可能限制结果的普适性 评估不同分辨率CT技术在骨小梁微结构参数测量中的准确性 尸体胫骨远端骨骸的骨小梁微结构 医学影像 NA CT成像(高分辨率CT、超高分辨率CT、超超高分辨率CT)、深度学习重建、微CT NA CT图像 16个尸体胫骨远端骨骺 NA NA 骨小梁厚度、骨小梁分离度、骨体积/总体积的测量值与微CT参考值的比值 NA
1724 2025-12-25
Gastric Neoplasm Detection at Contrast-enhanced CT with Deep Learning
2026-Jan, Radiology. Artificial intelligence
研究论文 本研究开发并验证了一种名为GANDA的深度学习模型,用于在临床常规增强CT中自动检测、诊断和分割胃部肿瘤 提出了一种联合分割和分类的三维深度学习模型(GANDA),用于胃部肿瘤的自动化检测与诊断,并在多个内部、外部及真实世界测试队列中验证了其性能,且诊断准确率显著高于经验丰富的放射科医生 研究为回顾性设计;模型在内部测试队列中的分割性能(Dice系数)对于胃癌和非胃癌分别为0.52和0.45,仍有提升空间 开发并验证一种基于深度学习的自动化工具,用于在增强CT图像中检测、诊断和分割胃部肿瘤 胃部肿瘤(胃癌及非胃癌)患者 数字病理学 胃癌 对比增强CT 深度学习模型 三维CT图像 共4606名患者(来自多个中心,时间跨度为2007年至2023年) NA 联合分割和分类的三维深度学习模型 敏感性, 特异性, 准确率, 受试者工作特征分析, Dice系数 NA
1725 2025-12-25
Artificial intelligence in modern clinical practice (Review)
2026 Jan-Feb, Medicine international
综述 本文综述了人工智能在现代临床实践中的应用、机遇与挑战 系统整合了近期研究成果,全面探讨了AI在临床决策支持、影像分析、精准医疗等领域的角色,并强调了实施中的关键障碍 作为综述文章,未进行原始数据收集或模型验证,主要依赖现有文献分析 讨论人工智能在现代临床实践中的作用,并突出未来的机遇与挑战 临床实践中的AI应用,包括医生、患者及医疗系统 NA NA NA NA 临床数据 NA NA NA NA NA
1726 2025-12-25
Beyond Accuracy: Enhancing Parkinson's Diagnosis with Uncertainty Quantification of Machine Learning Models
2026, Artificial intelligence in healthcare : second International Conference, AIiH 2025, Cambridge, UK, September 8-10, 2025, Proceedings. Part I. International Conference on Artificial Intelligence in Healthcare (2nd : 2025 : Cambridge, Eng...
研究论文 本研究评估了三种不确定性量化方法在帕金森病诊断中的表现,旨在提升机器学习模型的可靠性 首次在帕金森病诊断中系统比较了蒙特卡洛Dropout、深度证据分类和贝叶斯神经网络三种不确定性量化方法,并公开了完整代码 研究仅使用了三种特定类型的数据集(手指敲击、面部表情、语音模式),未涵盖其他临床数据 通过不确定性量化技术提高帕金森病诊断中机器学习模型的可靠性和安全性 帕金森病患者 机器学习 帕金森病 NA 贝叶斯神经网络 手指敲击数据、面部表情数据、语音模式数据 三个数据集 NA NA 诊断准确性、不确定性评估 NA
1727 2025-12-25
Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
2026, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 本文提出了一种基于核心-外围原则引导的状态空间模型(CP-SSM),用于功能连接组分类,以改进神经影像学中的脑网络分析 提出了结合选择性状态空间模型Mamba(具有线性复杂度)与受脑网络核心-外围组织启发的混合专家模型CP-MoE的创新框架,以高效捕获功能脑网络中的长程依赖关系 仅在ABIDE和ADNI两个基准fMRI数据集上进行了评估,未在其他脑疾病或更大规模数据集上验证泛化能力 开发一种高效且有效的计算模型,用于功能连接组分类,以辅助神经影像学为基础的神经系统疾病诊断 人类功能脑网络(功能连接组) 机器学习 神经系统疾病 功能磁共振成像 状态空间模型, 混合专家模型 功能连接组数据(源自fMRI) 两个基准fMRI数据集(ABIDE和ADNI),具体样本数未在摘要中明确说明 NA Mamba(选择性状态空间模型), CP-MoE(核心-外围引导的混合专家) 分类性能(具体指标未在摘要中明确说明) NA
1728 2025-12-25
Domain-Adaptive Diagnosis of Lewy Body Disease with Transferability Aware Transformer
2026, Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
研究论文 本文提出了一种可迁移性感知的Transformer模型,用于在数据稀缺和领域偏移场景下,从阿尔茨海默病数据中迁移知识以增强路易体病的诊断 首次探索在数据稀缺和领域偏移条件下,从阿尔茨海默病到路易体病的领域自适应研究,并设计了基于注意力机制的Transformer模型来分配高权重给疾病可迁移特征,抑制领域特定特征 数据稀缺可能限制模型的泛化能力,且领域偏移问题虽被缓解但未完全消除 通过领域自适应方法,利用丰富的阿尔茨海默病数据来提升路易体病的诊断准确性 路易体病和阿尔茨海默病的患者数据,特别是结构磁共振成像衍生的结构连接性数据 数字病理学 路易体病 结构磁共振成像 Transformer 图像 NA NA Transformer 诊断准确性 NA
1729 2025-12-25
An Enhanced Random Convolutional Kernel Transform for Diverse and Robust Feature Extraction from High-Density Surface Electromyograms for Cross-day Gesture Recognition
2026-Jan, International journal of neural systems IF:6.6Q1
研究论文 本文提出了一种名为EMG-ROCKET的增强型随机卷积核变换方法,用于从高密度表面肌电图中提取多样且鲁棒的特征,以提升跨日手势识别的性能 提出了EMG-ROCKET方法,集成了随机通道融合和增强聚合函数,以增强对HD-sEMG跨日信号变化的鲁棒性,无需先验知识或大量训练 未明确提及方法在更大规模或更多样化数据集上的泛化能力,也未讨论计算效率的详细分析 开发一种无需训练、鲁棒的特征提取方法,以解决高密度表面肌电图在手势识别中特征多样性有限和数据依赖性高的问题 高密度表面肌电图信号 机器学习 NA 高密度表面肌电图 Ridge分类器 肌电图信号 在两个HD-sEMG数据集上进行评估,具体样本数量未明确说明 NA EMG-ROCKET(基于ROCKET的增强版本) 准确率 NA
1730 2025-12-24
Artificial intelligence revolutionize food detection? Vision, olfaction and taste integrated with machine learning/deep learning in food detection
2026-Jan-15, Food chemistry IF:8.5Q1
综述 本文综述了人工智能(AI)如何通过机器学习(ML)和深度学习(DL)技术,整合视觉、嗅觉和味觉感知系统,革新食品检测领域 系统阐述了AI在食品检测中实现特征自动提取、模式识别和决策反馈的机制,并展望了多模态数据融合和大语言模型(LLMs)的潜在应用 总结了AI在食品检测中仍面临的主要挑战 阐明AI在食品检测领域的理论框架和技术范式变革,分析其优势与局限,并展望未来发展方向 食品检测技术 机器学习 NA 计算机视觉、电子鼻、电子舌 机器学习、深度学习 复杂信号(视觉、嗅觉、味觉数据) NA NA NA 检测精度、鲁棒性 NA
1731 2025-12-24
Surface-Enhanced Raman Spectroscopy Semi-Quantitative Molecular Profiling with a Convolutional Neural Network
2026-Jan, Applied spectroscopy IF:2.2Q2
研究论文 本研究开发了一种结合表面增强拉曼光谱与卷积神经网络和支持向量回归的层次分析框架,用于复杂环境中多种分子的半定量分析 提出了一种集成深度学习和回归技术的层次分析框架,首次将多标签CNN用于SERS光谱中结构相似分析物的识别,并结合SVR进行半定量浓度比测定 目前仅验证了短链脂肪酸二元混合物,尚未扩展到更复杂的多组分系统或临床样本 解决复杂环境中多种分子物种的识别和定量分析挑战 短链脂肪酸(SCFAs)作为代表性生物分子靶标 机器学习 NA 表面增强拉曼光谱(SERS) CNN, SVR 光谱数据 NA NA 卷积神经网络 分类准确率 NA
1732 2025-12-24
Integrating Deep Model-Based Learning With Modular State-Based Stackelberg Games for Self-Optimizing Distributed Production Systems
2026-Jan, IEEE transactions on cybernetics IF:9.4Q1
研究论文 本文提出了一种将深度模型学习与模块化状态Stackelberg博弈相结合的新方法,用于制造系统的分布式自优化 使用深度学习替代数字表示来学习系统动态,并在虚拟环境中训练博弈参与者,从而减少实际系统交互需求 NA 开发一种样本高效的方法,用于分布式生产系统的自优化 制造系统 机器学习 NA 深度学习 深度学习模型 系统动态数据 NA NA NA 交互减少率 NA
1733 2025-12-24
Artificial intelligence-based lesion characterization and outcome prediction of prostate cancer on [18F]DCFPyL PSMA imaging
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本研究开发了基于人工智能的模型,用于前列腺癌[18F]DCFPyL PET/CT成像中的病灶特征描述和预后预测 开发了结合PET和CT模态的输入串联深度学习模型,在PSMA-RADS评分、恶性分类、治疗反应预测和生存预测等多个任务中表现出优越性能 生存预测的C指数相对较低(内部测试集0.58,前瞻性测试集0.60),模型性能有待进一步提升 开发人工智能工具以改善前列腺癌的病灶特征描述和患者预后预测,辅助临床决策 接受[18F]DCFPyL PET/CT成像的前列腺癌患者 数字病理学 前列腺癌 [18F]DCFPyL PET/CT成像 深度学习模型 医学影像(PET和CT图像) 训练和内部测试集238例患者,前瞻性测试集36例患者 NA 输入串联模型(单模态和多模态深度学习模型) AUROC(受试者工作特征曲线下面积), C-index(一致性指数) NA
1734 2025-12-24
AttnSeq-PPI: Enhancing protein-protein interaction network prediction using transfer learning-driven hybrid attention
2026-Jan-01, Biochimica et biophysica acta. Proteins and proteomics
研究论文 提出了一种基于混合注意力机制的深度学习框架AttnSeq-PPI,用于增强蛋白质-蛋白质相互作用网络预测 结合自注意力和交叉注意力设计混合注意力机制,利用ProtT5语言模型嵌入蛋白质序列,有效捕获序列内长程依赖和蛋白质间相互作用特征 未明确说明模型在特定蛋白质类型或复杂相互作用场景下的局限性 开发一种基于序列的蛋白质-蛋白质相互作用预测方法,以克服实验和计算技术的限制 蛋白质序列及其相互作用网络 自然语言处理 NA 深度学习,大语言模型 混合注意力机制 蛋白质序列 基于种内和多物种数据集进行5折交叉验证,并使用四个独立物种和真实PPI网络数据集进行验证 未明确指定 自注意力,交叉注意力 准确率 NA
1735 2025-12-24
Deep Feature Learning From Electromyographic Signals for Gesture Recognition Systems
2026, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
综述 本文全面综述了用于肌电信号手势识别系统的最新深度学习模型,并从数据表示的角度对先进架构进行了分类 首次从数据表示(如时域波形、空间图像、谱域和图结构)的视角对深度学习架构进行分类,并探讨了半监督与自监督学习作为全监督范式的补充方法 高质量标注的肌电数据集有限,阻碍了研究成果向实际应用的转化 开发用于肌电信号解码的通用且鲁棒的深度学习模型,以推动手势识别系统在人机交互、神经接口和康复机器人等领域的应用 肌电信号 机器学习 NA 肌电图 深度学习模型 肌电信号(可表示为时域波形、空间图像、谱域和图结构) NA NA NA NA NA
1736 2025-12-24
Modality-AGnostic image Cascade (MAGIC) for multi-modality cardiac substructure segmentation
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本文提出并验证了一种名为MAGIC的模态无关图像级联深度学习管道,用于多模态心脏亚结构分割 通过复制nnU-Net骨干网络的编码和解码分支来处理多模态输入和重叠标签,实现了在单一模型中分割多种图像模态和重叠结构,同时显著减少了训练时间和参数数量 未明确说明模型在更广泛或未见过的模态上的泛化能力,以及在实际临床环境中的部署验证 开发一种高效、轻量化的深度学习解决方案,用于多模态心脏亚结构分割,以减轻轮廓勾画负担并提高治疗规划中的心脏保护 心脏亚结构,包括心脏整体、心腔、大血管、瓣膜、冠状动脉和传导节点 数字病理学 心血管疾病 深度学习 CNN 图像 训练集151例,验证集15例,测试集30例,涉及心脏CT血管造影、模拟CT和低场MR-Linac等多种模态 PyTorch nnU-Net Dice相似系数, Wilcoxon符号秩检验 NA
1737 2025-12-24
Evaluation of compartmentalized automatic segmentation for definition of the GTV in glioblastoma radiotherapy
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本研究评估了深度学习模型Neosoma Glioma在胶质母细胞瘤放疗中自动分割大体肿瘤体积的临床应用价值 首次评估了基于深度学习的自动分割模型在术后胶质母细胞瘤放疗靶区勾画中的临床应用,并验证了其几何相似性和剂量学等效性 研究为回顾性分析,样本量有限(100例),且仅在一家医疗机构进行验证 评估自动分割模型在胶质母细胞瘤放疗靶区定义中的临床应用可行性 术后胶质母细胞瘤患者 数字病理学 胶质母细胞瘤 多模态MRI 深度学习模型 医学影像 100例胶质母细胞瘤病例 NA Neosoma Glioma Dice相似系数 NA
1738 2025-12-24
Dynamic prediction of Radiotherapy toxicities in Head and neck cancer using clinical and imaging data
2026-Jan, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology IF:4.9Q1
研究论文 本研究开发了一个动态深度学习模型,用于预测头颈癌放疗期间的三种主要毒性反应,通过整合临床数据和每日锥形束CT影像进行评估 首次将每日CBCT影像的解剖变形特征(雅可比行列式矩阵)与临床数据结合,用于动态预测头颈癌放疗毒性,并评估了序列影像或剂量学特征对早期预测的改进效果 研究为回顾性分析,影像数据(早期Jf或影像组学)未显示出对预测性能的改进,可能受限于数据特征或模型架构 开发一个动态深度学习模型,以早期预测头颈癌放疗期间的毒性反应,优化患者管理 头颈癌患者 数字病理学 头颈癌 锥形束计算机断层扫描(CBCT),影像组学分析 CNN, MLP 影像(CBCT),临床数据 1,012名头颈癌患者 NA 3D ResNet50, 多层感知机 准确率 NA
1739 2025-12-24
Real-Time Rodent Pupillometry on an Embedded Platform for Neuromodulation
2026, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society IF:4.8Q1
研究论文 本研究提出了一种基于嵌入式平台的低成本实时啮齿动物瞳孔测量系统,用于神经调控研究 开发了一种针对啮齿动物优化的基于规则的瞳孔测量算法,结合自适应椭圆拟合、RGB掩模伪影抑制和贪婪跟踪,在红外照明下实现稳健性能,无需GPU加速 系统主要针对大鼠设计,可能不直接适用于其他啮齿动物或不同实验条件;性能评估基于特定实验设置,泛化能力需进一步验证 开发一种适用于啮齿动物实验的实时瞳孔测量系统,以支持神经调控研究 Long-Evans大鼠 计算机视觉 NA 红外照明成像 基于规则的算法 图像 未明确指定样本数量,但涉及Long-Evans大鼠的体内实验 嵌入式平台(未指定具体框架) 自适应椭圆拟合、RGB掩模、贪婪跟踪 检测率 嵌入式平台(无需GPU加速)
1740 2025-12-24
Clinical advances in curve of Spee assessment: Deep learning for automatic tooth landmark detection in Invisalign
2026-Jan, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics IF:2.7Q1
研究论文 本研究提出了一种基于深度学习的全自动方法,用于从口内扫描数据中评估Spee曲线,旨在提高测量效率并支持评估不同垂直骨面型患者在Invisalign治疗中Spee曲线整平的可预测性 首次引入深度学习网络(结构感知长短期记忆框架)实现Spee曲线的全自动评估,通过两阶段方法检测牙齿标志点,提高了测量效率和准确性 研究为回顾性设计,样本量相对有限(194个下颌弓模型),且仅针对Invisalign治疗患者,可能限制了结果的普适性 开发一种自动化方法以高效、准确地评估Spee曲线,并分析不同垂直骨面型患者在Invisalign治疗中Spee曲线整平的可预测性差异 接受Invisalign治疗的患者的下颌弓模型 数字病理学 NA 口内扫描 LSTM 三维模型 194个下颌弓模型用于训练和验证,55名不同垂直骨面型患者用于分析 NA 结构感知长短期记忆框架 平均径向误差, 成功检测率, 配对Wilcoxon检验 NA
回到顶部