本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2621 | 2026-01-11 |
Leveraging hemispheric asymmetry in structural MRI with an attention-guided 3D CNN for early prediction of Alzheimer's conversion
2026-Jan-04, Neural networks : the official journal of the International Neural Network Society
IF:6.0Q1
DOI:10.1016/j.neunet.2025.108534
PMID:41512495
|
研究论文 | 本文提出了一种基于半球不对称性分析的轻量级3D卷积神经网络HemiNet,用于从单时间点结构MRI中预测轻度认知障碍向阿尔茨海默病的转化 | 首次将半球不对称性作为关键生物标志物引入深度学习模型,通过不对称性差异挖掘、对侧半球融合机制和病理焦点注意力机制,实现了从单次扫描中高效预测疾病进展 | 研究基于ADNI数据集,可能受限于样本多样性和数据采集协议,且模型在临床广泛应用前需进一步外部验证 | 早期预测轻度认知障碍向阿尔茨海默病的转化 | 轻度认知障碍患者的结构MRI数据 | 数字病理学 | 阿尔茨海默病 | 结构MRI | CNN | 图像 | ADNI数据集中的样本(具体数量未明确说明) | NA | 3D CNN | AUC, 准确率 | NA |
| 2622 | 2026-01-11 |
Peptide-functionalized membrane camouflage for endogenous H2S-induced photothermal immunotherapy of orthotopic colorectal cancer
2026-Jan-03, Nature communications
IF:14.7Q1
DOI:10.1038/s41467-025-65876-9
PMID:41484054
|
研究论文 | 本文开发了一种肽功能化膜伪装平台,用于通过内源性H2S诱导的光热免疫疗法治疗原位结直肠癌 | 利用抗菌肽功能化的结直肠癌细胞膜封装钴基金属有机框架,实现肿瘤微环境中内源性H2S的协同调控,结合光热效应与免疫激活 | 研究主要基于小鼠模型,临床转化潜力尚需进一步验证;未详细讨论长期毒性或潜在脱靶效应 | 开发一种结合免疫调节与肠道菌群调控的抗癌疗法,以降低结直肠癌的复发和转移率 | 原位结直肠癌小鼠模型 | 数字病理 | 结直肠癌 | 金属有机框架封装、光热疗法、免疫疗法 | NA | 实验数据、成像数据 | 肿瘤小鼠模型(具体数量未明确) | AI深度学习 | Segment Anything模型 | 凸包算法评估的治疗效果比较 | NA |
| 2623 | 2026-01-11 |
Evaluation of the effectiveness of artificial intelligence models in radiopaque and radiolucent lesions of the maxillofacial region on panoramic radiographs
2026-Jan, Oral radiology
IF:1.6Q3
DOI:10.1007/s11282-025-00838-x
PMID:40593453
|
研究论文 | 本研究评估了深度学习算法在全景X光片上对上颌面部区域阻射性和透射性病变的分类、检测和分割效果 | 首次系统比较了多种深度学习架构(AlexNet、VGG16、GoogleNet、YOLOv8)在全景X光片上对上颌面部病变的自动化分析能力,并明确了不同任务的最佳模型 | 研究样本年龄跨度大(12-80岁),可能影响模型泛化性;部分分类任务的准确率(如三分类61.6%)仍有提升空间 | 评估人工智能模型在全景X光片上对上颌面部区域病变的自动化分析效果 | 全景X光片中显示的上颌面部区域阻射性和透射性病变 | 计算机视觉 | 上颌面部疾病 | 全景X光成像 | CNN | 医学影像(X光片) | 未明确样本数量,但包含12-80岁患者的全景X光片 | NA | AlexNet, VGG16, GoogleNet, YOLOv8 | 准确率, 精确率, F1分数, 平均精度均值 | NA |
| 2624 | 2026-01-11 |
pyDOSEIA: A Python Package for Radiological Impact Assessment during Long-term or Accidental Atmospheric Releases
2026-Jan-01, Health physics
IF:1.0Q4
DOI:10.1097/HP.0000000000002014
PMID:40622262
|
研究论文 | 介绍了一个用于气象数据处理和辐射影响评估的Python软件包pyDOSEIA | 开发了一个基于高斯羽流模型、遵循IAEA和AERB指南的开源Python工具包,支持多暴露途径、年龄/距离/核素特异性剂量计算,并具备并行处理能力 | 未明确说明模型在极端气象条件或复杂地形下的验证情况 | 开发用于核与辐射事故中长期或意外大气释放的辐射影响评估工具 | 大气释放的放射性核素 | 机器学习 | NA | 高斯羽流模型 | NA | 气象数据、辐射剂量数据 | NA | Python | NA | NA | 并行处理能力 |
| 2625 | 2026-01-11 |
Accelerating direct material decomposition via diffusion probabilistic model for Sparse-view spectral computed tomography
2026-Jan, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.1177/08953996251375815
PMID:41147999
|
研究论文 | 提出了一种基于扩散概率模型的无监督深度学习框架,用于稀疏视图能谱CT中的直接材料分解 | 首次将虚拟单能图像作为关键区分增强器引入多色投影优化,并结合扩散概率先验进行材料分解,有效解决了传统方法在稀疏采样和几何不一致情况下的收敛慢、伪影多等问题 | 仅在临床前数据上进行了验证,尚未在临床数据或更复杂的真实场景中进行广泛测试 | 提高稀疏视图能谱CT中材料分解的准确性和效率 | 能谱CT的虚拟单能图像和材料分解结果 | 医学影像分析 | NA | 能谱CT | 扩散概率模型 | CT投影数据,图像 | NA | NA | NA | 峰值信噪比,结构相似性 | NA |
| 2626 | 2026-01-11 |
Predictive modeling approaches for Alzheimer's disease diagnosis through neuroimaging techniques
2026-Jan, Ageing research reviews
IF:12.5Q1
DOI:10.1016/j.arr.2025.102989
PMID:41371350
|
综述 | 本文详细探讨了利用机器学习和深度学习预测建模方法,通过神经影像技术自动诊断阿尔茨海默病的过程与主要组成部分 | 整合人工智能(机器学习和深度学习)与神经影像及生物标志物,实现AD的自动、高精度、快速诊断,避免了传统手动操作生物标志物的局限性 | NA | 通过预测建模技术改进阿尔茨海默病的诊断过程,解决传统方法在时间、成本和准确性方面的挑战 | 阿尔茨海默病的诊断过程,包括神经影像扫描和生物标志物 | 机器学习 | 阿尔茨海默病 | 神经影像技术(如计算机断层扫描、磁共振成像、正电子发射断层扫描)和脑脊液生物标志物(如淀粉样蛋白-β₄₂、总tau蛋白、磷酸化tau蛋白) | 机器学习算法, 深度学习算法 | 神经影像图像, 生物标志物数据 | NA | NA | NA | 分类器性能水平, 验证指标 | NA |
| 2627 | 2026-01-11 |
Automated retinal disease classification using deep learning and AlexNet with statistical models analysis
2026, PloS one
IF:2.9Q1
DOI:10.1371/journal.pone.0338415
PMID:41494023
|
研究论文 | 本研究提出了一种基于深度学习的框架,用于将视网膜图像自动分类为正常、糖尿病视网膜病变、白内障和青光眼四种类型 | 使用多种CNN架构(包括EfficientNet-B0、EfficientNet-B7、从头构建的模型和AlexNet)进行比较评估,并利用SHAP进行模型可解释性分析,以突出临床相关的视网膜区域 | 未明确说明数据集的样本数量,且处理时间(约14分钟)对于实时筛查系统可能仍需优化 | 开发一个自动化的视网膜疾病分类系统,以辅助早期检测和预防不可逆的视力丧失 | 视网膜图像 | 计算机视觉 | 糖尿病视网膜病变、白内障、青光眼 | 深度学习 | CNN | 图像 | NA | NA | EfficientNet-B0, EfficientNet-B7, AlexNet | 准确率, 灵敏度, 特异性, PPV, NPV, F1分数, R2 | NA |
| 2628 | 2026-01-11 |
Estimation of whole-body skeletal muscle volume using pectoralis muscle area and anthropometric measurements from chest CT in a Korean population
2026-Jan, Clinical physiology and functional imaging
IF:1.3Q4
DOI:10.1111/cpf.70046
PMID:41496377
|
研究论文 | 本研究利用单张胸部CT切片的胸肌面积和基本人体测量数据,开发了韩国人群全身骨骼肌体积的估计模型 | 首次结合单张胸部CT切片的胸肌面积和基本人体测量数据,开发了针对韩国人群的全身骨骼肌体积估计模型,提供了一种基于常规胸部CT图像的实用肌肉评估替代方法 | 研究样本仅来自韩国人群,可能限制了模型的普适性;样本量为201名成年人,相对较小 | 开发一种利用常规胸部CT图像和基本人体测量数据估计全身骨骼肌体积的实用方法 | 韩国成年人群(101名女性,100名男性)的PET-CT数据 | 数字病理学 | NA | 胸部CT成像,PET-CT | LASSO回归模型 | 医学影像(CT图像),人体测量数据 | 201名成年人(101名女性,100名男性) | NA | NA | R²值,Bland-Altman偏差 | NA |
| 2629 | 2026-01-11 |
TissUnet: Improved extracranial tissue and cranium segmentation for children through adulthood
2026, Imaging neuroscience (Cambridge, Mass.)
DOI:10.1162/IMAG.a.1067
PMID:41503005
|
研究论文 | 本文提出了一种名为TissUnet的深度学习模型,用于从常规三维T1加权MRI中分割颅外组织(颅骨、皮下脂肪和肌肉) | TissUnet模型在广泛的年龄范围(从儿童到成人)和包括脑肿瘤患者的多种数据集上进行了验证,其性能优于先前的最先进方法,并展示了在儿科人群中的优秀表现 | 模型在脑肿瘤病例中的分割性能(中位Dice系数0.81)略低于健康个体(0.83),表明在病理条件下可能存在一定的局限性 | 开发一个能够快速、准确、可重复地分割颅外组织的深度学习模型,以支持大规模关于颅面形态、治疗效果和心脏代谢风险的研究 | 从儿童到成人的个体,包括健康人群和脑肿瘤患者 | 数字病理学 | 脑肿瘤 | MRI, CT | 深度学习模型 | 三维T1加权MRI图像 | 训练集:155对MRI-CT扫描;验证集:九个数据集,包括37对MRI-CT和专家手动标注 | NA | U-Net | Dice系数 | NA |
| 2630 | 2026-01-11 |
Synthetic multi-inversion time magnetic resonance images for visualization of subcortical structures
2026-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.13.1.014002
PMID:41503368
|
研究论文 | 本文提出了一种名为SyMTIC的深度学习方法,用于从常规磁共振图像生成合成多反转时间图像,以增强皮层下结构的可视化 | 结合深度神经网络与成像物理原理,通过估计纵向弛豫时间和质子密度图来合成任意反转时间的多反转时间图像 | 方法依赖于特定配对图像数据进行训练,可能对未包含的训练数据类型的泛化能力有限 | 改善皮层下灰质结构的磁共振成像可视化,以支持神经科学研究和临床实践 | 皮层下灰质结构,特别是丘脑核团 | 医学影像分析 | NA | 磁共振成像,包括T1加权、T2加权和FLAIR序列 | 深度神经网络 | 磁共振图像 | NA | NA | NA | 图像质量,分割改进 | NA |
| 2631 | 2026-01-11 |
Deep learning model with collage images for the segmentation of dedicated breast positron emission tomography images
2026-Jan, Breast cancer (Tokyo, Japan)
DOI:10.1007/s12282-023-01492-z
PMID:37634221
|
研究论文 | 本研究评估了深度学习在专用乳腺正电子发射断层扫描图像自动分割异常摄取区域的应用,并通过拼贴图像进行数据增强以解决训练数据稀缺问题 | 提出使用由裁剪的异常摄取和正常乳腺组成的拼贴图像进行数据增强,以应对dbPET图像噪声高和数据稀缺的挑战 | 研究为回顾性设计,样本量相对有限(662个乳腺),且仅基于特定时间段的数据 | 开发自动分割dbPET图像中异常摄取区域的深度学习模型,以辅助乳腺病变评估 | 专用乳腺正电子发射断层扫描图像中的异常摄取区域 | 数字病理学 | 乳腺癌 | 专用乳腺正电子发射断层扫描 | CNN | 图像 | 662个乳腺(其中217个有异常摄取) | NA | U-Net | Dice分数, 分类准确率 | NA |
| 2632 | 2026-01-11 |
Deep learning model to predict Ki-67 expression of breast cancer using digital breast tomosynthesis
2026-Jan, Breast cancer (Tokyo, Japan)
DOI:10.1007/s12282-024-01549-7
PMID:38448777
|
研究论文 | 本研究开发了一个基于数字乳腺断层合成图像的深度学习模型,用于预测乳腺癌Ki-67表达水平 | 首次将Xception架构应用于数字乳腺断层合成图像,以预测Ki-67表达,并针对不同放射学特征亚组进行了性能评估 | 研究为回顾性设计,样本量相对较小(126例),且未在外部数据集上进行验证 | 开发一个深度学习模型,利用数字乳腺断层合成图像预测乳腺癌Ki-67表达,以辅助术前治疗策略制定 | 经病理确诊的乳腺癌患者及其数字乳腺断层合成图像 | 数字病理学 | 乳腺癌 | 数字乳腺断层合成 | CNN | 图像 | 126例经病理确诊的乳腺癌患者 | NA | Xception | 准确率, 灵敏度, 特异性, AUC | NA |
| 2633 | 2026-01-11 |
CADRE: A novel unsupervised reconstruction algorithm for limited-angle CT of ancient wooden structures
2026-Jan, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.1177/08953996251380012
PMID:41105016
|
研究论文 | 本文提出了一种名为CADRE的无监督深度学习重建算法,用于解决古木结构有限角度CT图像重建中的质量问题 | CADRE算法创新性地结合了ADMM优化策略、深度Radon先验网络学习范式以及几何轮廓引导机制,无需大规模配对训练数据,特别适用于文化遗产领域 | NA | 开发一种能够从不完整的有限角度投影数据中实现高质量图像重建的新算法 | 古木结构,如应县木塔的数字仿真模型和佛光寺的物理木模型 | 计算机视觉 | NA | 计算机断层扫描(CT) | 深度学习 | 图像 | 使用应县木塔的数字仿真模型和佛光寺的物理木模型进行系统验证 | NA | 深度Radon先验网络 | PSNR, SSIM | NA |
| 2634 | 2026-01-11 |
Optimizing cancer classification: A metaheuristic-driven review of feature selection and deep learning approaches
2026-Jan, Journal of X-ray science and technology
IF:1.7Q3
DOI:10.1177/08953996251375817
PMID:41384935
|
综述 | 本文对2012年至2025年间发表的91篇同行评议文章进行了系统性回顾,探讨了元启发式算法在癌症分类中特征选择和深度神经网络优化方面的应用 | 首次系统性地综述了元启发式算法在癌症分类中同时应用于特征选择和深度神经网络优化的研究,并对39个图像数据集和44个微阵列数据集进行了全面梳理 | 作为综述文章,主要基于现有文献进行分析,未提出新的算法或模型,且时间范围限定在2012-2025年 | 优化癌症分类,通过特征选择和深度神经网络架构优化提高分类性能 | 医学影像和微阵列基因表达数据 | 机器学习 | 癌症 | 微阵列基因表达分析,医学影像分析 | kNN, SVM, CNN | 图像,基因表达数据 | 涉及91篇研究文章,涵盖39个图像数据集和44个微阵列数据集 | NA | NA | NA | NA |
| 2635 | 2026-01-10 |
Pulmonary blood volume redistribution in COVID-19 patients of different severity and its predictive value for six-month outcomes in the less pathogenic Omicron variant
2026-Dec, Pulmonology
IF:10.4Q1
DOI:10.1080/25310429.2025.2607932
PMID:41504189
|
研究论文 | 本研究探讨了不同严重程度COVID-19患者的肺血容量(PBV)再分布模式,并验证了其对Omicron变异株六个月临床结局的预测价值 | 首次在免疫逃逸能力强的Omicron变异株中,系统研究了肺血容量再分布模式及其对长期临床结局的预测价值,并发现其预测阈值与既往高致病性变异株不同 | 回顾性研究设计,样本主要来自单一时期(2022年11月至2023年1月),可能无法完全代表其他变异株或人群 | 探究COVID-19严重程度与肺血容量再分布的关系,并评估PBV对Omicron变异株六个月临床结局的预测能力 | COVID-19患者(包括轻/中度和重/危重症组) | 数字病理学 | COVID-19 | CT成像 | 深度学习算法 | CT图像 | 921名患者(轻/中度组755人,重/危重症组166人) | NA | 预训练深度学习模型 | AUC, 敏感性, 比值比(OR) | NA |
| 2636 | 2026-01-10 |
Iterative Modeling via Structural Diffusion (IMSD): Exploring Fold-Switching Pathways in Metamorphic Proteins Using AlphaFold2-Based Generative Diffusion Model UFConf
2026-Feb, Proteins
IF:3.2Q2
DOI:10.1002/prot.70050
PMID:40990820
|
研究论文 | 本文提出了一种基于AlphaFold2的生成扩散模型UFConf的新算法IMSD,用于探索变形蛋白的折叠切换路径 | 开发了基于UFConf的迭代建模算法IMSD,首次利用生成扩散模型模拟变形蛋白从一种构象状态到另一种的完整折叠切换路径 | NA | 预测蛋白质折叠切换潜力并建模其重折叠路径 | 变形蛋白GA98、SA1 V90T和RfaH的C端结构域 | 机器学习 | NA | 生成扩散模型 | 扩散模型 | 蛋白质结构数据 | NA | AlphaFold2 | UFConf | NA | NA |
| 2637 | 2026-01-10 |
A Novel Multimodal Deep Image Analysis Model for Predicting Extraction/Non-Extraction Decision
2026-Feb, Orthodontics & craniofacial research
IF:2.4Q2
DOI:10.1111/ocr.70057
PMID:41195767
|
研究论文 | 本研究开发了一种基于深度学习模型的多模态图像分析模型,用于预测正畸治疗中的拔牙/非拔牙决策 | 提出了一种结合侧位头影测量片和口内扫描数据的多模态深度学习模型,并引入了新颖的牙齿空间特征提取方法 | 研究样本量相对有限(617例患者),且仅基于单一机构的数据,可能影响模型的泛化能力 | 开发一个辅助正畸医生决策的深度学习模型,用于预测拔牙/非拔牙的二元分类 | 617名正畸患者(平均年龄18.2岁,63.5%为女性)的侧位头影测量片和口内扫描数据 | 计算机视觉 | 口腔正畸 | 头影测量分析,口内扫描,特征提取 | 深度学习分类器 | 图像(侧位头影测量片和口内扫描数据) | 617名患者(192例拔牙组,425例非拔牙组) | NA | CephNet,卷积自编码器 | 准确率,灵敏度,特异性,阳性预测值,阴性预测值,阳性似然比,阴性似然比,F1分数 | NA |
| 2638 | 2026-01-10 |
Small data, big challenges: Machine- and deep-learning strategies for data-limited drug discovery
2026-Feb, Advanced drug delivery reviews
IF:15.2Q1
DOI:10.1016/j.addr.2025.115762
PMID:41421504
|
综述 | 本文综述了在数据有限的药物发现中,机器学习和深度学习面临的挑战及应对策略 | 针对药物发现流程中普遍存在的小数据问题,系统整合了传统机器学习方法和先进的深度学习策略,填补了现有综述的空白 | NA | 探讨在数据有限的药物发现中,如何应用和调整机器学习和深度学习模型 | 药物发现与开发流程中的关键任务 | 机器学习 | NA | NA | CNN, LSTM, GAN | NA | NA | TensorFlow, PyTorch, Keras, Scikit-learn | ResNet, VGG, Transformer, U-Net, DenseNet, EfficientNet | 准确率, 精确率, 召回率, F1分数, AUC, Dice系数 | GPU类型(如NVIDIA RTX 3090, V100, A100), 云平台(如AWS, Google Cloud, Azure), 分布式计算 |
| 2639 | 2026-01-10 |
Artificial Intelligence and Machine (Deep) Learning in Otorhinolaryngology: A Bibliometric Analysis Based on VOSviewer and CiteSpace
2026-Feb, Ear, nose, & throat journal
DOI:10.1177/01455613231185074
PMID:37515527
|
综述 | 本文通过文献计量分析可视化人工智能和深度学习在耳鼻喉科疾病中的研究热点与趋势 | 首次系统性地利用VOSviewer和CiteSpace软件对耳鼻喉科中AI和DL领域进行文献计量分析,揭示时间维度上的热点演变 | 仅基于Web of Science核心合集的232篇文章,可能未涵盖所有相关文献,且分析依赖于特定软件工具 | 通过文献计量分析帮助研究者理解人工智能和深度学习在耳鼻喉科疾病基础与临床研究的未来发展方向 | 耳鼻喉科疾病,包括耳硬化症、中耳炎、鼻息肉、鼻窦炎等 | 机器学习 | 耳鼻喉科疾病 | 文献计量分析 | NA | 文献数据 | 232篇文章和综述 | VOSviewer, CiteSpace | NA | NA | NA |
| 2640 | 2026-01-10 |
Unlocking the potential of umami peptides: A comprehensive review of preparation methods, evaluation strategies, health benefits, and taste transduction mechanisms
2026-Feb-01, Food research international (Ottawa, Ont.)
DOI:10.1016/j.foodres.2025.118024
PMID:41508449
|
综述 | 本文系统综述了鲜味肽的制备方法、评价策略、健康益处及味觉转导机制,并探讨了其在食品工业中的开发应用 | 系统整合了多组学技术、分子模拟及深度学习在鲜味肽高通量筛选中的应用,并提出了结合冷冻电镜、单分子FRET等先进技术解析受体结合机制的新方向 | 鲜味受体激活的构象机制尚未完全阐明,且缺乏高通量筛选与标准化评价的统一技术体系 | 为食品工业中鲜味肽的开发、利用及健康化提供新的研究方向和技术路径 | 鲜味肽(umami peptides) | 食品科学 | NA | 多组学技术、分子模拟、深度学习、冷冻电镜、单分子FRET、三维变异性分析、多光谱技术、分子动力学模拟 | 深度学习模型 | 多组学数据、分子结构数据、生物传感数据 | NA | NA | NA | NA | NA |