本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 2761 | 2026-01-08 |
Spatial distribution prediction and scale effect analysis of urban daytime noise based on remote sensing images: a case study of Chengdu
2026-Jan-01, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.128379
PMID:41422570
|
研究论文 | 本研究基于高分辨率遥感影像和深度学习模型,预测成都市白天噪声的空间分布并分析尺度效应 | 首次将高分辨率遥感影像与ResNet和ViT架构的端到端深度学习模型结合,用于预测城市白天噪声分布,并通过多尺度融合实验和傅里叶谱分析揭示了2米分辨率的最优性能及其物理机制 | 研究仅针对成都市,未考虑其他城市或不同气候条件;多尺度融合实验未带来显著性能提升,可能受限于数据冗余或冲突 | 探索基于遥感影像的城市道路交通噪声高效监测方法,分析不同空间分辨率对预测性能的影响 | 成都市整个城市区域的白天噪声分布 | 计算机视觉 | NA | 遥感影像分析 | CNN, Transformer | 图像 | NA | NA | ResNet, ViT | 预测精度 | NA |
| 2762 | 2026-01-08 |
The Evolving Landscape of Urology in the Era of Artificial Intelligence: An Update of Clinical Applications and Emerging Innovations
2026-Jan, Mymensingh medical journal : MMJ
PMID:41474926
|
综述 | 本文更新了人工智能在泌尿外科领域的临床应用和新兴创新,涵盖诊断成像、良性疾病、泌尿肿瘤、手术和患者监测等方面 | 强调了人工智能在泌尿外科中的最新进展,包括通过尿液液体活检进行早期疾病检测、基于AI的计算活检直接从H&E染色切片预测基因组标记,以及未来如通用人工智能和联邦学习等创新方向 | 数据多样性不足和临床整合存在限制,同时面临算法偏见和数据隐私等伦理挑战 | 综述人工智能在泌尿外科领域的应用现状、临床价值及未来发展趋势 | 泌尿外科疾病,包括良性泌尿系统疾病(如输尿管结石、良性前列腺增生)和泌尿系统肿瘤(如前列腺癌、肾细胞癌、膀胱癌) | 数字病理学 | 前列腺癌 | 机器学习, 深度学习 | NA | 图像, 液体活检, H&E染色切片 | NA | NA | NA | 准确率, AUC, 敏感性 | NA |
| 2763 | 2026-01-08 |
Validation of a Deep Learning U-Net Algorithm for Multistructure Segmentation of Infrarenal Abdominal Aortic Aneurysms including Lumen, Thrombus, and Calcifications
2026, EJVES vascular forum
IF:1.4Q3
DOI:10.1016/j.ejvsvf.2025.11.001
PMID:41488250
|
研究论文 | 本研究验证了一种基于深度学习的U-Net算法,用于自动分割腹主动脉瘤的多个结构,包括管腔、血栓和钙化 | 开发了一种全自动深度学习算法,能够同时分割腹主动脉瘤的管腔、血栓和钙化,为数字孪生生成提供优化方案 | 外部验证仅基于48个CT血管造影扫描,样本量相对较小 | 验证一种新的全自动深度学习主动脉分割算法,用于优化数字孪生生成 | 腹主动脉和髂动脉的管腔、侧支动脉、腔内血栓和壁钙化 | 数字病理 | 心血管疾病 | CT血管造影 | CNN | 图像 | 训练集1280个CT血管造影扫描(1000个预训练,280个微调),外部验证集48个扫描 | NA | U-Net | Dice相似系数,平均表面距离 | NA |
| 2764 | 2026-01-08 |
Deep Learning Model for Predicting Operative Mortality After Total Gastrectomy: Analysis of the Japanese National Clinical Database (NCD)
2026-Jan, Annals of gastroenterological surgery
IF:2.9Q2
DOI:10.1002/ags3.70067
PMID:41488848
|
研究论文 | 本研究利用日本国家临床数据库(NCD)的大数据,开发了一个深度学习模型,用于预测全胃切除术后的手术死亡率 | 首次利用NCD大数据构建深度学习模型来预测全胃切除术后的手术死亡率,并采用了四层、5217个变量的复杂模型结构 | 模型准确性有待提高,需要引入与术后并发症相关或传统方法无法分析的新变量 | 开发一个深度学习预测模型,用于术前基于患者预期手术风险进行分层,以降低全胃切除术后的死亡率 | 2018年1月至2019年12月期间在日本国家临床数据库中注册的、年龄18岁及以上、因胃癌接受全胃切除术的患者 | 机器学习 | 胃癌 | NA | 深度学习模型 | 结构化临床数据(包括年龄、性别、既往病史、术前血液检查结果、肿瘤特征等) | 14,980例(其中11,980例用于训练,3,000例用于验证) | TensorFlow, Keras | 四层神经网络 | C统计量(AUC) | NA |
| 2765 | 2026-01-08 |
Advancing biological taxonomy in the AI era: deep learning applications, challenges, and future directions
2026-Jan, Science China. Life sciences
DOI:10.1007/s11427-025-3074-8
PMID:41136689
|
综述 | 本文回顾了生物分类学在人工智能时代的发展,重点探讨了深度学习在图像、声音、基因序列分类及物种性状解析中的应用、挑战与未来方向 | 系统梳理了生物分类学从形态学、分子生物学到人工智能驱动的三个阶段,首次提出将基因组视为“语言”的基础模型可能为物种界定提供更根本的数据驱动基础,并强调因果感知模型的整合可能带来变革 | 面临数据质量、算法鲁棒性、参考库完整性、模型透明度及共享标准等多重挑战,且AI与分类学的深度融合可能导致核心分类概念的演变,需谨慎引导 | 探讨人工智能(特别是深度学习)在生物分类学中的应用潜力、当前挑战及未来发展方向 | 生物分类学的方法论与技术体系 | 自然语言处理, 计算机视觉, 机器学习 | NA | 深度学习, 基础模型 | 基础模型 | 图像, 音频, 基因序列, 文本 | NA | NA | NA | NA | NA |
| 2766 | 2026-01-08 |
Bioprocess modeling and optimization in composting of hazelnut processing wastes and municipal solid waste: Type 1 fuzzy regression, neural network based approaches and genetic algorithm
2026-Jan-01, Journal of environmental management
IF:8.0Q1
DOI:10.1016/j.jenvman.2025.128254
PMID:41386011
|
研究论文 | 本研究开发了一种混合模型,用于预测和优化榛子加工废弃物与城市固体废物堆肥过程中的堆肥成熟度 | 提出了一种结合模糊回归、神经网络和深度学习策略的混合模型,能够同时建模线性和非线性关系,处理过程不确定性,并具备现有文献中建模工具所不具备的优越特性 | 未明确说明实验样本的具体数量,且模型性能仅在特定废弃物组合下验证 | 通过机器学习模型优化有机废弃物堆肥过程,提高堆肥效率和质量 | 榛子壳、榛子壳与城市固体废物的混合堆肥过程 | 机器学习 | NA | 堆肥过程监测(温度、pH、C/N、水分含量、NH/NO、发芽指数) | 混合模型(模糊回归、神经网络、深度学习) | 过程参数数据(温度、pH、C/N等) | 未明确说明具体样本数量,但提及使用有限实验数据 | NA | 神经网络(具体架构未指定) | 比例误差(低于5%)、期望水平(95%以上) | NA |
| 2767 | 2026-01-08 |
Detection of Mycobacterium tuberculosis in Ziehl-Neelsen Stained Sputum Smear Specimens Using Deep Learning Techniques
2026-Jan, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica
IF:2.2Q3
DOI:10.1111/apm.70138
PMID:41494997
|
研究论文 | 本研究探讨了深度学习技术在Ziehl-Neelsen染色痰涂片标本中检测结核分枝杆菌的有效性 | 应用多种迁移学习模型(如DenseNet201、ResNet101V2、Xception等)进行结核分枝杆菌的自动检测,其中InceptionV3和Xception模型在所有评估指标上达到99.00%的高性能 | 未明确说明样本来源的多样性、模型在临床环境中的泛化能力测试以及计算资源的具体需求 | 评估深度学习模型在基于显微镜检查的结核病诊断中的性能,并探索其在提高敏感性和可用性方面的改进 | Ziehl-Neelsen染色的痰涂片标本中的抗酸杆菌(AFB) | 计算机视觉 | 结核病 | 抗酸染色(Ziehl-Neelsen染色) | CNN | 图像 | NA | NA | DenseNet201, ResNet101V2, Xception, InceptionResNetV2, InceptionV3 | 准确率, 召回率, 精确率, F1分数 | NA |
| 2768 | 2026-01-08 |
Attention-driven framework to segment renal ablation zone in posttreatment CT images: a step toward ablation margin evaluation
2026-Jan, Journal of medical imaging (Bellingham, Wash.)
DOI:10.1117/1.JMI.13.1.014001
PMID:41497560
|
研究论文 | 本文提出了一种基于注意力机制的深度学习框架,用于在治疗后CT图像中分割肾脏消融区,以辅助消融边缘评估 | 首次使用并行CT图像进行基于深度学习的肾脏消融区分割,并引入了注意力机制增强U-Net架构以提升分割精度 | 数据集规模较小(仅76名患者),且分割精度(如DSC为0.70)和召回率(0.73)仍有提升空间,可能影响在多样化临床场景中的泛化能力 | 开发并评估一种准确的深度学习工作流程,用于从肾脏CT图像中分割肾脏消融区,以支持治疗评估 | 肾脏消融区(RAZ)在治疗后CT图像中的分割 | 数字病理学 | 肾细胞癌 | CT成像 | CNN | 3D CT图像 | 76名患者的注释肾脏消融区CT图像 | NA | 注意力增强的U-Net | 准确率, 精确率, 召回率, DSC, Jaccard系数, 特异性, 豪斯多夫距离, 平均绝对边界距离 | NA |
| 2769 | 2026-01-07 |
Predictive modeling of hospital emergency department demand using artificial intelligence: A systematic review
2026-Mar-01, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.106215
PMID:41401760
|
系统综述 | 本文系统综述了使用人工智能预测医院急诊科需求的相关研究 | 系统比较了传统时间序列模型与AI模型(特别是机器学习和深度学习)在急诊需求预测中的表现,并强调了整合外部变量(如天气、空气质量)的重要性 | 纳入研究数量有限(11篇),缺乏外部验证,且可解释性AI方法应用不足 | 系统回顾用于医院急诊科需求预测的预测模型,重点关注算法、变量、验证策略及疫情前后的发展 | 关于医院急诊科需求预测的同行评审研究文献 | 机器学习 | NA | NA | ARIMA, SARIMA, XGBoost, Random Forest, LSTM, CNN | 时间序列数据 | NA | NA | NA | 平均绝对误差, 均方根误差, 平均绝对百分比误差 | NA |
| 2770 | 2026-01-07 |
Physics-constrained deep learning for reservoir thermal structure prediction: Enhanced interpretability and extrapolation capability
2026-Feb-15, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.125086
PMID:41344133
|
研究论文 | 提出一种物理约束深度学习框架(P-DL),用于预测水库垂直热结构,以提高预测精度、物理可解释性和外推能力 | 结合机制驱动过程模型增强训练数据,将温度剖面转化为物理可解释参数,并通过弱物理约束改进外推能力 | NA | 快速预测水库垂直热结构,以支持生态保护导向的灵活水库优化策略 | 向家坝(XJB)水库 | 机器学习 | NA | NA | LSTM | 温度数据 | NA | NA | LSTM | RMSE, R², KLD, KSS | NA |
| 2771 | 2026-01-07 |
A prior knowledge-enhanced Transformer model for data anomaly identification and processing in industrial park wastewater treatment plants
2026-Feb-15, Water research
IF:11.4Q1
DOI:10.1016/j.watres.2025.125125
PMID:41389419
|
研究论文 | 本研究提出了一种先验知识增强的Transformer模型,用于工业园污水处理厂数据异常识别与处理 | 将污水处理领域专业知识融入深度学习架构,显著提升了复杂时空耦合异常的高精度识别与重建能力 | NA | 为工业污水处理提供稳健的数据管理和智能运行创新解决方案 | 中国两个工业园污水处理厂的运行数据 | 机器学习 | NA | 深度学习 | Transformer | 时序数据 | 两个污水处理厂一年的运行数据 | NA | 先验知识增强Transformer | 异常识别准确率, 数据重建精度 | NA |
| 2772 | 2026-01-07 |
Deep-Learning Virtual Superior Mesenteric Artery Modeling for Risk Stratification in Pancreas Surgery
2026-Feb, Annals of surgical oncology
IF:3.4Q1
DOI:10.1245/s10434-025-18543-8
PMID:41251913
|
研究论文 | 本研究评估了基于深度学习的虚拟肠系膜上动脉建模,用于三维可视化其走行和分支模式,并关联解剖特征与手术结果 | 首次将深度学习虚拟建模应用于肠系膜上动脉解剖分析,以预测胰腺手术风险 | 样本量相对较小(124例),且仅基于两家医疗中心的数据,可能存在选择偏差 | 评估深度学习虚拟建模在胰腺手术中用于风险分层和预后预测的可行性 | 接受胰腺切除术的胰腺恶性肿瘤患者 | 数字病理学 | 胰腺癌 | 计算机断层扫描(CT) | 深度学习模型 | 医学影像(CT扫描) | 124例患者 | NA | NA | NA | NA |
| 2773 | 2026-01-07 |
Deep Learning for Video Anomaly Detection: A Review
2026-Jan-05, IEEE transactions on neural networks and learning systems
IF:10.2Q1
DOI:10.1109/TNNLS.2025.3647892
PMID:41489948
|
综述 | 本文对基于深度学习的视频异常检测方法进行了全面综述,涵盖了不同监督级别的分类、公共数据集、开源代码和评估指标 | 弥补了过去综述仅关注半监督VAD和小模型方法的局限性,深入探讨了基于预训练大模型和开放世界学习的最新工作 | NA | 视频异常检测(VAD)旨在发现视频中偏离正常行为或事件 | 视频数据 | 计算机视觉 | NA | 深度学习 | NA | 视频 | NA | NA | NA | NA | NA |
| 2774 | 2026-01-07 |
Revisiting Out-of-Distribution Detection in Real-time Object Detection: From Benchmark Pitfalls to a New Mitigation Paradigm
2026-Jan-05, IEEE transactions on pattern analysis and machine intelligence
IF:20.8Q1
DOI:10.1109/TPAMI.2025.3650695
PMID:41489965
|
研究论文 | 本文重新审视了实时目标检测中的分布外检测问题,揭示了现有基准测试的缺陷,并提出了一种新的训练时缓解范式 | 揭示了广泛使用的评估基准存在根本性缺陷(OoD测试集中高达13%的对象实际上属于分布内类别),并提出了一种独立于外部OoD检测器的新型训练时缓解范式,通过使用语义上类似于分布内对象的合成OoD数据集微调检测器来塑造防御性决策边界 | 未明确说明合成OoD数据集的构建细节及其在不同场景下的泛化能力限制 | 有效减少目标检测器中由分布外输入引起的幻觉错误 | 实时目标检测模型 | 计算机视觉 | NA | NA | CNN | 图像 | 使用BDD-100K数据集 | PyTorch | YOLO, Faster R-CNN, RT-DETR | 幻觉错误减少率 | NA |
| 2775 | 2026-01-07 |
Risk prediction of progression from normal cognitive function to Alzheimer's disease in elderly aged 65 and above based on deep learning methods
2026-Jan-05, Journal of Alzheimer's disease : JAD
DOI:10.1177/13872877251410937
PMID:41490207
|
研究论文 | 本研究基于深度学习模型,预测65岁及以上老年人从正常认知功能进展为阿尔茨海默病的风险 | 采用深度学习模型(DeepSurv和DeepHit)与传统Cox模型比较,用于预测阿尔茨海默病的进展风险,并评估其在临床早期筛查中的潜力 | 研究未详细说明样本的具体来源和多样性,且临床验证尚未完成,模型的实际应用效果有待进一步确认 | 建立从正常认知功能进展为阿尔茨海默病的风险预测模型,为临床决策和早期筛查工具开发提供参考 | 65岁及以上认知功能正常的老年人 | 机器学习 | 阿尔茨海默病 | NA | DeepSurv, DeepHit, Cox模型 | 临床数据 | NA | NA | DeepSurv, DeepHit, Cox模型 | C-index, IBS, AUC | NA |
| 2776 | 2026-01-07 |
A deep learning-based markerless gait analysis model for dogs shows promising accuracy when validated with 2-dimensional marker-based data
2026-Jan-05, American journal of veterinary research
IF:1.3Q2
DOI:10.2460/ajvr.25.09.0337
PMID:41490686
|
研究论文 | 本文开发并验证了一种基于深度学习的无标记步态分析模型,用于犬类步态分析,并与二维标记系统进行比较 | 首次从随机初始化训练专门针对犬类步态分析的深度学习模型,并在临床环境中验证其准确性 | 需要进一步在不同犬种和环境条件下进行验证,目前仍处于早期阶段 | 开发适用于犬类步态分析的深度学习模型,并验证其准确性 | 犬类步态分析 | 计算机视觉 | NA | 深度学习 | ViTPose-L | 图像 | 408只客户拥有的犬只,涉及超过30个品种,包括小型到大型体型 | NA | ViTPose-L | COCO风格的平均精度均值, 归一化关键点误差, 正确关键点百分比 | NA |
| 2777 | 2026-01-07 |
Osteoarthritis Severity Classification in Knee X-Rays Using Optimized Deep Learning Approaches
2026-Jan-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01818-7
PMID:41491733
|
研究论文 | 本研究提出了一种基于深度学习的系统,利用膝关节X射线图像对骨关节炎的严重程度进行分类 | 使用灰狼优化算法自动优化全连接层的超参数,以提高模型在区分骨关节炎等级时的学习效率和准确性 | 数据集仅来自单一医院,样本量相对较小(每类200张图像,共1000张),可能影响模型的泛化能力 | 开发一个准确分类骨关节炎严重程度的系统,以辅助早期诊断和治疗决策 | 膝关节X射线图像 | 计算机视觉 | 骨关节炎 | X射线成像 | CNN | 图像 | 1000张膝关节X射线图像(每类200张,共5类) | NA | EfficientNetB1, DenseNet169, Xception | 准确率, 精确率, 召回率, F1分数, ROC曲线 | NA |
| 2778 | 2026-01-07 |
MMCT-Net: a Multi-Modal Hybrid CNN-Transformer Fusion Network for Preoperative Prediction of Malignant Invasion in Pulmonary Ground-Glass Nodules
2026-Jan-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01795-x
PMID:41491731
|
研究论文 | 提出一种多模态混合CNN-Transformer融合网络,用于术前预测肺磨玻璃结节中的恶性浸润 | 开发了MMCT-Net模型,结合局部到全局的上下文信息与2D到3D空间表示,并自适应融合深度学习特征、临床参数和影像组学特征 | 研究为多中心回顾性设计,可能存在选择偏倚;样本量相对有限(421例患者) | 提高肺磨玻璃结节中浸润性腺癌的术前预测准确性,降低手术不匹配率 | 接受磨玻璃结节手术的421例患者的薄层CT扫描和临床病理数据 | 计算机视觉 | 肺癌 | 薄层计算机断层扫描 | CNN, Transformer | 图像, 临床数据 | 421例患者 | NA | MMCT-Net(多模态混合CNN-Transformer融合网络) | AUC | NA |
| 2779 | 2026-01-07 |
TET Loss: A Temperature-Entropy Calibrated Transfer Loss for Reliable Medical Image Classification
2026-Jan-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01816-9
PMID:41491738
|
研究论文 | 本文提出了一种用于医学图像分类的温度-熵校准迁移损失函数(TET Loss),旨在提高模型的可靠性和泛化能力 | 提出了一种即插即用的损失函数,结合温度缩放调节逻辑值锐度和熵正则化促进不确定性感知学习,无需增加推理时间开销 | 仅在四个公开基准数据集上进行了验证,未在更大规模或更多样化的临床数据集上进行测试 | 提高医学图像分类模型的预测可靠性和领域适应性,减少过自信预测和领域不匹配问题 | 医学图像分类模型 | 计算机视觉 | 乳腺癌, 皮肤病, 肺炎, 视网膜疾病 | NA | CNN, Transformer, 混合骨干网络 | 图像 | 四个公开基准数据集(BreastMNIST, DermaMNIST, PneumoniaMNIST, RetinaMNIST) | NA | EfficientViT-M2, BiFormer-Tiny, RMT-T3 | F1分数, AUC | NA |
| 2780 | 2026-01-07 |
From Liver to Brain: A 2.5D Deep Learning Model for Predicting Hepatic Encephalopathy Using Opportunistic Non-contrast CT in Hepatitis B Related Acute-on-Chronic Liver Failure Patients
2026-Jan-05, Journal of imaging informatics in medicine
DOI:10.1007/s10278-025-01802-1
PMID:41491737
|
研究论文 | 本研究开发了一种基于2.5D深度学习的框架,利用非对比CT扫描预测乙型肝炎相关慢加急性肝衰竭患者的肝性脑病风险 | 首次提出利用常规非对比CT扫描结合2.5D深度学习和多示例学习方法,从肝脏影像中预测肝性脑病风险,为无创个体化风险评估提供了新方法 | 回顾性研究设计,样本量相对有限(228例),仅针对乙型肝炎相关慢加急性肝衰竭患者,未在其他病因肝病患者中验证 | 开发早期预测肝性脑病的深度学习模型,实现个体化风险评估 | 乙型肝炎相关慢加急性肝衰竭患者 | 数字病理学 | 肝性脑病 | 非对比CT扫描 | 深度学习 | 医学影像 | 228例患者(训练集102例,内部验证集44例,外部测试集82例) | PyTorch, Scikit-learn | DenseNet121, DenseNet201, ResNet50, InceptionV3 | AUC | NA |