深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202601-202612] [清除筛选条件]
当前共找到 3238 篇文献,本页显示第 3001 - 3020 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3001 2025-12-17
Deceiving question-answering models: A hybrid word-level adversarial approach
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为QA-Attack的单词级对抗策略,用于欺骗问答模型 利用基于注意力的攻击机制和删除排序策略,识别并针对上下文段落中的特定单词,通过同义词替换创建欺骗性输入,在保持语法完整性的同时误导模型产生错误响应 NA 探索问答模型对抗攻击的鲁棒性 问答模型 自然语言处理 NA NA NA 文本 NA NA NA 成功率, 语义变化, BLEU分数, 流畅度, 语法错误率 NA
3002 2025-12-17
Spiking neural networks for EEG signal analysis: From theory to practice
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
综述 本文综述了脉冲神经网络在脑电图信号分析中的理论进展与实际应用,旨在弥合理论与实践之间的差距 系统性地将脉冲神经网络应用于脑电图信号分析,强调其相较于传统深度学习方法的时序信息处理优势和计算效率,并提供实践指导与开源代码 综述性质文章,未进行原创性实验验证,且基于现有方法总结,可能未涵盖所有最新进展 探讨脉冲神经网络在脑电图信号分析中的应用潜力,推动脑机接口和神经反馈系统的发展 脑电图信号 机器学习 NA NA SNN 脑电图信号 NA NA NA NA NA
3003 2025-12-17
MSA-LR: Enhancing multi-scale temporal dynamics in multivariate time series forecasting with low-rank self-attention
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为MSA-LR的新型架构,旨在通过可学习的尺度权重矩阵和低秩近似来增强多变量时间序列预测中的多尺度时间动态建模能力 引入了可学习的尺度权重矩阵和低秩近似方法,能够直接建模不同时间粒度(如小时、日、周)的影响,实现对多尺度交互的细粒度控制,同时显著降低了计算复杂度 未明确说明模型在极端事件或非平稳时间序列上的表现,也未讨论模型对超参数选择的敏感性 提升多变量时间序列预测的准确性,特别是长期预测场景下的性能 多变量时间序列数据 机器学习 NA NA Transformer 时间序列数据 NA NA MSA-LR(多尺度自注意力低秩近似架构) 预测准确率 NA
3004 2025-12-17
AI for colon cancer: A focus on classification, detection, and predictive modeling
2026-Feb, International journal of medical informatics IF:3.7Q2
综述 本文系统评估了人工智能在结肠癌检测、分类、预测和分割方面的应用现状及其对诊断准确性、治疗规划和患者结局的影响 通过系统综述和元分析,评估了AI在结肠癌研究中的最新进展,特别关注了可解释AI和生成AI技术的应用,并进行了基于AI技术类型和应用的亚组分析 临床整合仍面临数据和验证方面的挑战,且研究质量依赖于纳入文献的完整性和可靠性 评估人工智能在结肠癌研究中的应用现状及其对诊断准确性、治疗规划和患者结局的影响 2020年至2024年间发表的关于人工智能在结肠癌中应用的研究文章 数字病理学 结肠癌 NA 深度学习, 机器学习 NA 80篇文章 NA NA 诊断准确性 NA
3005 2025-12-17
Towards out-of-distribution detection using gradient vectors
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为GradVec的新方法,利用梯度向量进行分布外检测,以区分未知样本与已知类别样本 首次将梯度空间作为输入表示用于OOD检测,通过模型梯度更信息性地表达样本属于已知类别的知识,无需改变训练过程或额外数据 未明确讨论计算复杂度或梯度计算可能带来的额外开销 开发一种基于梯度向量的分布外检测方法,以提高模型在真实世界场景中对未知样本的识别能力 深度学习模型在图像分类和文本分类任务中的分布外样本检测 机器学习 NA NA 深度学习模型 图像, 文本 NA NA NA FPR95 NA
3006 2025-12-17
Graph-patchformer: Patch interaction transformer with adaptive graph learning for multivariate time series forecasting
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出了一种名为Graph-Patchformer的新型深度学习框架,用于多变量时间序列预测,通过结构编码和自适应图学习捕获序列内依赖和序列间局部动态依赖 结合结构编码反映MTS内部结构信息,并利用提出的Patch Interaction Blocks同时捕获序列内依赖和序列间局部动态依赖,无需额外的多尺度特征融合模块 未在摘要中明确说明 提升多变量时间序列预测的准确性和性能 多变量时间序列数据 机器学习 NA NA Transformer, 自适应图学习 多变量时间序列数据 NA NA Graph-Patchformer, Patch Interaction Blocks NA NA
3007 2025-12-17
A multi-level teacher assistant-based knowledge distillation framework with dynamic feedback for motor imagery EEG decoding
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种基于多级教师助理知识蒸馏的动态反馈框架,用于压缩运动想象脑电信号解码的深度学习模型 提出了一个新颖的知识蒸馏框架MIKD,包含多级教师助理知识蒸馏模块和动态反馈模块,能在高压缩比下有效提取和传递MI-EEG信号的多层次知识 NA 压缩用于运动想象脑电信号分类的深度学习模型,同时保持高性能,以适用于实际脑机接口应用 运动想象脑电信号 机器学习 NA 脑电图 深度学习模型 脑电信号 三个公共脑电数据集 NA NA 准确率 NA
3008 2025-12-17
Elevating adversarial robustness by contrastive multitasking defence in medical image segmentation
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 本文提出了一种名为CEASE的新型防御方法,通过结合对比学习和多任务学习,显著提升医学图像分割模型对抗对抗性攻击的鲁棒性 首次将对比学习与多任务学习整合,针对医学图像分割任务设计防御机制,有效降低对抗性攻击成功率至0% 未明确说明方法在更广泛医学图像数据集或不同攻击类型下的泛化能力 增强基于深度学习的医学图像分割模型对抗对抗性攻击的鲁棒性 医学图像分割模型 计算机视觉 NA 深度学习 CNN 医学图像 公开可用数据集 NA NA 攻击成功率 NA
3009 2025-12-17
Self identity mapping
2026-Feb, Neural networks : the official journal of the International Neural Network Society IF:6.0Q1
研究论文 提出了一种名为自身份映射(SIM)的数据内在正则化框架,通过逆映射机制增强表示学习,并实例化为ρSIM以降低计算复杂度 提出了一种模型无关、任务无关的即插即用正则化模块,通过重构输入来减少前向传播中的信息损失并促进更平滑的梯度流 NA 开发一种通用的正则化框架以增强深度学习的泛化能力并缓解过拟合 深度学习模型的正则化 机器学习 NA NA NA 图像, 音频, 时间序列 NA NA NA NA NA
3010 2025-12-17
Spatial single-cell proteomics landscape decodes the tumor microenvironmental ecosystem of intrahepatic cholangiocarcinoma
2026-Jan-01, Hepatology (Baltimore, Md.)
研究论文 本研究利用人工智能辅助的空间多组学技术,生成了肝内胆管癌的全面空间图谱,揭示了肿瘤微环境的空间特征与预后及免疫治疗的关系 首次结合多种空间多组学技术(如成像质谱流式、空间蛋白质组学、空间转录组学等)和深度学习系统,系统解析了肝内胆管癌肿瘤微环境的细胞空间拓扑结构,并识别出与预后相关的空间亚型 空间转录组学样本量较小(n=4),部分数据依赖公共数据库,可能影响结果的普遍性 生成肝内胆管癌的空间肿瘤微环境图谱,识别与预后和免疫治疗相关的空间特征 肝内胆管癌患者的肿瘤组织样本 数字病理学 肝内胆管癌 成像质谱流式、空间蛋白质组学、空间转录组学、多重免疫荧光、单细胞RNA测序、批量RNA测序、批量蛋白质组学 深度学习 图像、蛋白质组数据、转录组数据 超过106万个细胞,包括155个内部成像质谱流式样本、155个内部空间蛋白质组学样本、4个内部空间转录组学样本、20个内部多重免疫荧光样本、9个内部和34个公共单细胞RNA测序样本、244个公共批量RNA测序样本、110个内部和214个公共批量蛋白质组学样本 NA NA 高准确度 NA
3011 2025-12-17
Clinical Translation of Integrated PET-MRI for Neurodegenerative Disease
2026-Jan, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
综述 本文综述了集成PET-MRI在神经退行性疾病临床实践中的转化应用,包括技术进展、临床益处及未来前景 总结了集成PET-MRI在神经退行性疾病中的最新技术革新,如基于MRI的衰减校正、运动校正方法以及深度学习在疾病分类和预测中的应用 NA 探讨集成PET-MRI在神经退行性疾病临床诊断和研究中的应用价值及技术发展 阿尔茨海默病及其他神经退行性疾病患者 数字病理学 神经退行性疾病 集成PET-MRI, MRI, PET 深度学习 图像 NA NA NA NA NA
3012 2025-12-17
A Deep Learning-Based Fully Automated Cardiac MRI Segmentation Approach for Tetralogy of Fallot Patients
2026-Jan, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
研究论文 本文评估了基于深度学习的模型用于法洛四联症患者心脏磁共振图像的左心室、右心室和左心室心肌的自动分割 采用MultiResUNet模型在混合数据集(包含法洛四联症和非法洛四联症病例)上训练,实现了对法洛四联症患者心脏结构的准确自动分割,并进行了内部和外部验证 研究为回顾性设计,样本量有限(特别是外部验证仅12例),且仅使用了一种成像序列 评估深度学习模型在法洛四联症患者心脏磁共振图像自动分割中的性能,以替代耗时且存在变异性的手动分割 427名患有不同心脏疾病的患者(包括122名法洛四联症患者和305名非法洛四联症患者)的心脏磁共振图像 数字病理学 心血管疾病 稳态自由进动电影序列 CNN 图像 427名患者(395名用于训练/验证,32名法洛四联症患者用于内部测试,12名外部法洛四联症患者用于泛化性评估) NA U-Net, Deep U-Net, MultiResUNet Dice相似系数, 交并比, F1分数 NA
3013 2025-09-11
Editorial for "A Deep Learning-Based Fully Automated Cardiac MRI Segmentation Approach for Tetralogy of Fallot Patients"
2026-Jan, Journal of magnetic resonance imaging : JMRI IF:3.3Q1
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
3014 2025-12-17
Predicting Radiation Pneumonitis Integrating Clinical Information, Medical Text, and 2.5D Deep Learning Features in Lung Cancer
2026-Jan-01, International journal of radiation oncology, biology, physics
研究论文 本文构建了一个基于临床信息、医学文本和2.5D深度学习特征的肺癌患者放射性肺炎预测模型 提出了一种结合临床信息、医学文本和2.5D多实例学习特征的放射性肺炎预测模型,为预测放疗副作用提供了新思路 模型在不同测试队列中的最优模型类型存在差异,可能影响泛化能力 构建放射性肺炎的预测模型以评估放疗副作用 肺癌患者 数字病理学 肺癌 CT成像, 放射治疗剂量切片 深度学习模型 图像, 文本 594名患者(356名来自一个中心,238名来自三个其他中心) NA DenseNet121, DenseNet201, Twins-SVT AUC NA
3015 2025-12-15
MediFlora-Net: Quantum-enhanced deep learning for precision medicinal plant identification
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究提出了一种名为MediFlora-Net的新型深度学习模型,用于精确识别药用植物 结合了多模态深度学习、量子辅助特征提取和混合集成方法,并引入了量子启发的特征提取技术,利用量子概率特征映射和基于纠缠的表征来提取高阶植物学特征 NA 提高药用植物识别的准确性和灵活性,以支持生物多样性保护、民族植物学研究和药理学应用 药用植物 计算机视觉 NA 多模态深度学习,量子辅助特征提取 CNN, GAN, Transformer 图像(RGB,高光谱植物图像) NA NA Vision Transformer (ViT), Convolutional Neural Networks (CNNs), Med-Plant-Generative Adversarial Networks (GANs) NA NA
3016 2025-12-15
Microbiome-transcriptome-histology triad enhances survival risk stratification in multiple cancers
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究提出了一个名为HMTsurv的多模态生存预测框架,通过整合数字组织病理学、宿主转录组学和肿瘤相关微生物组特征,以增强多种癌症的生存风险分层能力 首次将组织病理学、转录组学和微生物组特征整合到一个统一的多模态框架中,用于癌症生存预测,并识别了跨癌种的生存生物标志物 研究基于回顾性多组学数据集,临床实用性仍需前瞻性验证;模型在四种癌症中表现良好,但泛化到其他癌种的能力有待进一步评估 开发一个可泛化的多模态架构,用于癌症预后预测,并阐明生存的病理学、分子和生态学决定因素之间的复杂相互作用 结直肠癌、胃癌、肝细胞癌和乳腺癌患者的多组学数据 数字病理学 多种癌症 数字组织病理学、转录组学、微生物组分析 深度学习 图像、转录组数据、微生物组数据 来自四种主要恶性肿瘤的多组学数据集 NA HMTsurv c-index, log-rank p值 NA
3017 2025-12-15
TK-DDI: Accurate and efficient drug-drug interaction prediction via token encoding
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种基于分子标记化的深度学习框架TK-DDI,用于准确预测药物相互作用 通过分子标记化统一表示2D结构和3D构象信息,并采用两阶段注意力策略(分子内和分子间)来突出关键亚结构并融合药物对表示 未在摘要中明确说明 准确预测药物相互作用,以预防不良药物事件并确保患者安全 药物分子 机器学习 NA 分子标记化 Transformer 分子序列(2D结构和3D构象信息) 基准数据集(未指定具体数量) NA Transformer编码器 NA NA
3018 2025-12-15
Survey on phylogenetic tree construction using machine learning
2026-Feb, Computational biology and chemistry IF:2.6Q2
综述 本文综述了利用机器学习进行系统发育树构建的经典与机器学习方法,涵盖多序列比对和系统发育推断的算法、工具及评估指标 提供了系统发育分析流程的全面视觉总结,并整合了机器学习驱动的技术,特别关注了通过嵌入或端到端学习绕过传统比对的新方法 NA 综述机器学习在系统发育树构建中的应用,理解当前趋势并评估新兴技术如何重塑系统发育推断 系统发育分析中的多序列比对和系统发育推断方法 机器学习 NA NA NA 序列数据 NA NA NA 评估指标 NA
3019 2025-12-15
Deep ensemble model with blockchain technology for lung cancer detection with secured data sharing
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种结合区块链技术的深度集成模型,用于肺癌检测并实现安全的数据共享 提出了一种新型混合集成深度学习模型HCNN-ALSTM,结合了Autoencoder和LSTM进行特征提取,并采用改进的磷虾群算法MKHA进行参数优化,同时利用区块链智能合约确保数据共享的安全性和隐私性 未明确说明模型在跨机构数据异构性、计算资源需求或临床部署可行性方面的具体限制 开发一个安全高效的肺癌早期检测框架,提升诊断准确性并实现隐私保护的数据共享 CT扫描图像 计算机视觉 肺癌 CT扫描 CNN, Autoencoder, LSTM 图像 来自多个基准数据集的CT扫描数据(具体数量未明确) 未明确指定 HCNN-ALSTM(混合卷积神经网络结合自编码器和长短期记忆网络) 准确率, 特异性, 马修斯相关系数, Fowlkes-Mallows指数, Bookmaker Informedness, Markedness 未明确说明
3020 2025-12-15
Discovery of Mangifera indica-based natural inhibitors against TEM-1 β-lactamase from Escherichia coli using machine learning approaches
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本研究应用深度学习引导的流程,从芒果植物化学物中筛选出潜在的TEM-1 β-内酰胺酶抑制剂 首次将深度学习与分子对接、分子动力学模拟及密度泛函理论相结合,系统性地从芒果植物化学物中识别出新型β-内酰胺酶抑制剂,其结合性能优于现有临床抑制剂他唑巴坦和克拉维酸 研究主要基于计算模拟和体外数据,缺乏体内实验验证;筛选的化合物库仅限于芒果来源的植物化学物,可能遗漏其他天然来源的有效抑制剂 发现新型天然来源的β-内酰胺酶抑制剂以应对抗生素耐药性 大肠杆菌中的TEM-1 β-内酰胺酶及芒果植物化学物 机器学习 NA 深度学习, 分子对接, 分子动力学模拟, 密度泛函理论 神经网络 化学化合物数据 220个化合物用于训练神经网络,并从芒果植物化学物中筛选出25个顶级化合物 NA NA ROC-AUC, PR-AUC, Matthews相关系数, 富集因子 NA
回到顶部