本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3021 | 2025-12-15 |
A systematic review on deep learning based brain tumor segmentation and detection using MRI: Past insights, present techniques and future trends
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
综述 | 本文系统回顾了基于深度学习的MRI脑肿瘤分割与检测技术,涵盖历史洞察、当前方法和未来趋势 | 提供了深度学习模型在脑肿瘤分析中的详细时序分析,并强调了现有技术的优势、局限及研究空白 | 作为综述文章,未提出新的实验模型或数据,主要依赖现有文献的总结与分析 | 概述脑肿瘤分割与检测技术,分析深度学习模型在处理MRI数据中的应用与进展 | 脑肿瘤的MRI图像 | 计算机视觉 | 脑肿瘤 | MRI | 深度学习模型 | 图像 | NA | NA | NA | NA | NA |
| 3022 | 2025-12-15 |
GAN-based novel feature selection approach with hybrid deep learning for heartbeat classification from ECG signal
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于GAN和混合深度学习的ECG信号心跳分类新方法 | 结合GAN进行特征选择,并采用SExpHGS优化的DBN-VGG混合模型进行心跳分类 | NA | 开发一种最优的深度学习技术用于心跳分类 | 心电图信号中的心跳 | 机器学习 | 心血管疾病 | ECG信号处理 | GAN, DBN, VGG | 信号 | NA | NA | DBN-VGG | 准确率, 灵敏度, 特异性 | NA |
| 3023 | 2025-12-15 |
GDT-Net: Multi-level feature extraction network for precise diagnosis of atrial and ventricular fibrillation
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 提出了一种名为GDT-Net的神经网络,用于在复合噪声条件下对心房颤动和心室颤动进行稳健的心电图分类 | 设计了一种结合分组卷积、密集连接架构和Transformer编码器的多模块网络,专门针对复合噪声条件下的ECG信号分类,提高了诊断的鲁棒性 | 未明确提及,但可能包括对特定数据集(MIT-BIH)的依赖以及未在其他噪声类型或数据集上进行广泛验证 | 提高在复合噪声条件下对心房颤动和心室颤动的自动诊断准确性和鲁棒性 | 心电图信号 | 机器学习 | 心血管疾病 | 心电图分析 | CNN, Transformer | 时序信号 | 基于MIT-BIH数据集构建的六个子集(具体样本数未明确给出) | 未明确提及 | GDT-Net(包含G模块、D模块、T模块的自定义架构) | F1分数 | 未明确提及 |
| 3024 | 2025-12-15 |
Ovarian cancer detection from mutual information-ranked clinical biomarkers using an explainable attention-based residual multilayer perceptron
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文开发了一种名为EA-ResMLP的自动化深度学习模型,用于卵巢癌检测,通过集成残差多层感知器、挤压-激励注意力块和可解释人工智能技术,以提高诊断准确性和可解释性 | 提出了一种结合残差连接、注意力机制和可解释人工智能的深度学习模型EA-ResMLP,通过自适应重校准强调信息丰富的特征,实现了比传统多层感知器更高的诊断准确性 | 未明确提及模型在外部验证集上的性能、计算资源需求或临床部署的可行性 | 优化工作流程效率并提高卵巢癌诊断的准确性 | 卵巢癌 | 机器学习 | 卵巢癌 | NA | 多层感知器 | 临床生物标志物数据 | NA | NA | 残差多层感知器, 挤压-激励注意力块 | 准确率 | NA |
| 3025 | 2025-12-15 |
Optimized ensemble learning with multi-feature fusion for enhanced anti-inflammatory peptide prediction
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于多特征融合和集成学习的优化方法,用于增强抗炎肽的预测性能 | 通过集成多种深度学习与传统机器学习分类器,并采用软投票策略,显著提升了抗炎肽预测的准确度,同时揭示了抗炎肽序列中带正电荷残基的富集特征 | 研究依赖于公开数据集,可能受数据质量和平衡性影响;特征选择和集成策略的泛化能力需进一步验证 | 开发一种高效的计算方法以预测抗炎肽,克服传统实验方法的高成本和低通量限制 | 抗炎肽序列及其特征 | 机器学习 | NA | NA | LSTM, CNN, DNN, XGBoost, RF, AdaBoost, GBDT, LightGBM | 序列数据 | NA | NA | LSTM, CNN, DNN | NA | NA |
| 3026 | 2025-12-15 |
A comprehensive comparison of convolutional neural network and visual transformer models on skin cancer classification
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本研究对卷积神经网络和视觉Transformer模型在皮肤癌分类任务上进行了全面比较 | 首次在相同训练条件下,系统比较了15种先进CNN模型和15种ViT模型在皮肤癌分类中的性能,并发现基于Swin架构的ViT模型表现最佳 | ViT模型参数量更大、计算资源需求更高,限制了其在资源受限环境下的临床应用 | 比较不同深度学习模型在皮肤癌分类任务中的性能差异 | 皮肤癌图像数据 | 计算机视觉 | 皮肤癌 | 深度学习 | CNN, Transformer | 图像 | HAM10000和ISIC 2019两个公开数据集 | NA | Swin Transformer, 多种CNN架构 | 准确率 | NA |
| 3027 | 2025-12-15 |
MicroarrayCancerNet: Hybrid optimized deep learning with integration of graph CNN with 1D-CNN for cancer classification framework using microarray and seq expression data
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种名为MicroarrayCancerNet的新型癌症分类框架,该框架结合了图卷积神经网络和一维卷积神经网络,并采用改进的沙锥优化算法进行基因选择和模型参数优化 | 提出了一种混合优化深度学习框架,首次将图卷积神经网络与一维卷积神经网络相结合用于癌症分类,并引入了改进的沙锥优化算法进行基因选择和模型参数调优 | 未明确说明模型在独立验证集上的泛化能力,也未讨论计算复杂度或运行时间等实际应用限制 | 开发一个高精度的癌症分类框架,用于从微阵列和测序表达数据中识别癌症相关基因并进行准确分类 | 微阵列和测序表达数据中的基因表达谱 | 机器学习 | 癌症 | 微阵列测序、基因表达分析 | GCNN, 1D-CNN | 基因表达数据(数值矩阵) | NA | NA | 图卷积神经网络, 一维卷积神经网络 | 准确率 | NA |
| 3028 | 2025-12-15 |
PerturbSynX: Deep learning framework for predicting drug combination synergy scores using drug induced gene perturbation data
2026-Feb, Computational biology and chemistry
IF:2.6Q2
|
研究论文 | 本文提出了一种基于深度学习的多任务学习框架,用于预测药物组合的协同作用分数 | 提出了一种结合双向长短期记忆网络和注意力机制的混合架构,整合多模态生物数据同时预测药物协同分数和个体药物反应 | 训练策略可能导致轻微的不对称性,且模型在药物输入顺序上存在一定的敏感性 | 加速癌症研究中药物协同作用的发现 | 药物组合的协同作用分数和个体药物反应 | 机器学习 | 癌症 | 药物诱导的基因表达谱 | BiLSTM, 注意力机制 | 基因表达数据, 分子描述符 | 未明确提及具体样本数量 | 未明确提及 | BiLSTM, 注意力机制 | RMSE, PCC, R | 未明确提及 |
| 3029 | 2025-12-15 |
Molecular, metabolic, and histological subtypes of pancreatic ductal adenocarcinoma and its tumor microenvironment: Insights into tumor heterogeneity and clinical implications
2026-Jan, Pharmacology & therapeutics
IF:12.0Q1
DOI:10.1016/j.pharmthera.2025.108946
PMID:41183744
|
综述 | 本文综述了胰腺导管腺癌(PDAC)在分子、代谢和组织学层面的亚型分类方法,旨在促进实用、经济高效的诊断和个性化医疗 | 整合了单细胞和空间转录组学、代谢组学以及深度学习在组织病理学中的应用,揭示了PDAC的肿瘤异质性、肿瘤微环境相互作用及亚型可塑性,为亚型指导的治疗策略提供了新视角 | 作为一篇综述,未提出新的实验数据或模型,主要基于现有研究进行总结和讨论 | 旨在全面概述PDAC的亚型异质性,以指导未来的亚型知情治疗策略 | 胰腺导管腺癌(PDAC)及其肿瘤微环境 | 数字病理学 | 胰腺癌 | 单细胞转录组学, 空间转录组学, 代谢组学, 深度学习 | 深度学习模型 | 组织病理学图像(H&E染色切片), 转录组数据, 代谢组数据 | NA | NA | NA | NA | NA |
| 3030 | 2025-12-15 |
A transformer-based pathomics model using endoscopic biopsy WSIs for predicting pathological complete response to preoperative immunotherapy in colorectal cancer
2026-Jan, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
DOI:10.1016/j.ejso.2025.111182
PMID:41240799
|
研究论文 | 本研究基于内镜活检全切片图像,利用深度学习模型预测结直肠癌患者术前免疫治疗的病理完全缓解 | 结合Swin Transformer架构与卷积神经网络增强的自注意力机制,并采用CLAM框架优化病理图像分析,首次利用内镜活检WSIs预测结直肠癌术前免疫治疗的pCR | 样本量较小(训练集72例,验证集23例),且为单中心回顾性研究,可能限制模型的泛化能力 | 构建预测模型以识别结直肠癌患者术前免疫治疗的病理完全缓解 | 结直肠癌患者 | 数字病理学 | 结直肠癌 | H&E染色全切片图像分析 | Transformer, CNN | 图像 | 训练集72例,验证集23例 | CLAM | Swin Transformer | AUC | NA |
| 3031 | 2025-12-15 |
Optimal artificial intelligence model based on gastrointestinal filling contrast-enhanced ultrasound: Risk stratification of gastric gastrointestinal stromal tumors
2026-Jan, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
DOI:10.1016/j.ejso.2025.111190
PMID:41265372
|
研究论文 | 本研究基于胃肠道充盈对比增强超声图像,开发了一种深度学习模型,用于胃胃肠道间质瘤的早期筛查、辅助诊断和风险分层评估 | 首次将深度学习模型应用于胃肠道充盈对比增强超声图像,以实现胃胃肠道间质瘤的客观风险分层预测,减少操作者经验和主观判断的影响 | 样本量相对较小(121例患者),且为单中心研究,可能影响模型的泛化能力 | 开发基于胃肠道充盈对比增强超声图像的深度学习模型,用于胃胃肠道间质瘤的早期筛查、辅助诊断和风险分类评估 | 原发性胃胃肠道间质瘤患者 | 计算机视觉 | 胃肠道间质瘤 | 胃肠道充盈对比增强超声 | CNN | 图像 | 121例原发性胃胃肠道间质瘤患者 | NA | ResNet, CNN, ViT, EfficientNet | AUC | NA |
| 3032 | 2025-12-15 |
Uncertainty- and hardness-weighted loss functions for medical image segmentation
2026-Jan-01, Engineering applications of artificial intelligence
IF:7.5Q1
DOI:10.1016/j.engappai.2025.113118
PMID:41383559
|
研究论文 | 本文提出了一种用于医学图像分割的新型不确定性/困难度加权损失函数,通过概率引导不确定性权重和区域增强困难度权重来提升分割精度 | 首次提出结合像素级预测不确定性和困难度的双重加权损失函数,通过PGU和REH权重机制动态调整训练关注点 | 实验仅基于四种特定医学图像数据集,未验证在更广泛模态或临床场景中的泛化能力 | 改进医学图像分割的精度,特别是减少边界区域的分割误差 | 视网膜青光眼图像、视网膜血管树图像、光学相干断层扫描图像和心房分割挑战数据集 | 计算机视觉 | 青光眼,心血管疾病 | 深度学习 | Transformer, CNN | 二维图像,三维图像 | 四个公开数据集(REFUGE, RETA, OCT, ASC) | PyTorch | Swin-Unet, V-Net | Dice系数,分割误差 | 未明确说明 |
| 3033 | 2025-12-15 |
Feasibility of recent peptide therapy for ischemic stroke: a comprehensive exploration
2026-Jan, Journal of pharmacological sciences
IF:3.0Q2
DOI:10.1016/j.jphs.2025.10.007
PMID:41390189
|
综述 | 本文综述了肽疗法在缺血性卒中治疗中的最新进展及其潜力 | 探讨了人工智能与深度学习在肽生成中的应用,以加速药物发现过程 | NA | 探索肽疗法作为缺血性卒中新型治疗策略的可行性 | 缺血性卒中及其相关分子通路 | 自然语言处理 | 心血管疾病 | NA | 深度学习 | NA | NA | NA | NA | NA | NA |
| 3034 | 2025-12-14 |
ATR-FTIR spectroscopy coupled with deep learning for the identification and quantitative detection of Panax notoginseng adulteration
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127118
PMID:41197414
|
研究论文 | 本研究开发了一种结合衰减全反射-傅里叶变换红外光谱与深度学习的方法,用于快速、低成本地识别和定量检测三七主根粉中的掺杂物 | 首次将ATR-FTIR光谱与深度学习模型(CNN和Transformer)结合,用于三七掺假物的高精度识别与定量检测,超越了传统机器学习方法 | 研究未明确提及样本量的具体大小,且可能仅限于实验室环境下的粉末样品,未涉及更复杂的产品形式或大规模实地应用验证 | 开发一种高效、低成本的方法,以检测三七产品中的掺假问题,保障消费者健康与食品安全 | 三七主根粉及其掺杂物,包括三七须根粉、郁金粉和大米粉 | 机器学习 | NA | 衰减全反射-傅里叶变换红外光谱 | CNN, Transformer | 光谱数据 | NA | NA | CNN, Transformer | 准确率, R值 | NA |
| 3035 | 2025-12-14 |
Advanced artificial intelligence combined with SERS platforms for diagnosis and therapeutic effects of cancer in clinical applications
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127053
PMID:41207163
|
综述 | 本文综述了人工智能与表面增强拉曼光谱技术结合在癌症诊断和治疗效果评估中的临床应用进展 | 将人工智能算法集成到SERS平台中,实现了光谱数据的自动化预处理、噪声去除、关键信息提取和精准分类,提升了癌症早期诊断、分型和治疗监测的能力 | 面临数据标准化、模型可解释性以及监管机构审批等关键转化挑战,限制了其在临床肿瘤学中的常规应用 | 探讨AI-SERS技术在癌症诊断、治疗效果评估和复发预测中的临床应用 | 多种癌症类型,包括乳腺癌、肺癌、前列腺癌、皮肤癌、口腔癌、胃肠道癌、结直肠癌、胰腺癌和卵巢癌 | 机器学习 | 癌症 | 表面增强拉曼光谱 | 传统机器学习,深度学习 | 光谱数据 | NA | NA | NA | NA | NA |
| 3036 | 2025-12-14 |
Multi-task learning on microscopic hyperspectral data enables accurate classification of graphene oxide films
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127169
PMID:41237732
|
研究论文 | 本文提出了一种结合显微高光谱成像与多任务学习深度学习架构的新框架,用于对氧化石墨烯薄膜进行精确分类 | 首次将显微高光谱成像与多任务学习深度学习架构相结合,用于氧化石墨烯薄膜的高通量、非破坏性表征,显著提升了分类精度 | 未明确提及模型在其他材料或更复杂场景下的泛化能力,以及计算效率在实际工业应用中的评估 | 开发一种精确、高通量的氧化石墨烯表征方法,以支持先进技术应用和工业质量控制 | 氧化石墨烯薄膜 | 计算机视觉 | NA | 显微高光谱成像 | 深度学习神经网络 | 高光谱图像 | 未明确提及具体样本数量,但包含独立测试集 | 未明确提及 | 多任务学习深度学习架构 | 分类准确率 | 未明确提及 |
| 3037 | 2025-12-14 |
Deep learning-assisted SERS platform for label-free detection of celecoxib in serum using ag@Pt@porous silicon Bragg mirror composite substrate
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127165
PMID:41242102
|
研究论文 | 本研究提出了一种基于表面增强拉曼散射(SERS)与深度学习结合的创新检测方案,用于血清中塞来昔布的定性识别和定量检测 | 开发了Ag@Pt@多孔硅布拉格镜复合SERS基底,并首次将深度学习模型(GoogleNet、ResNet、VGG)应用于SERS光谱数据,以实现血药浓度的分类 | 深度学习模型的最高分类准确率为84.17%,仍有提升空间,且研究可能未涉及更广泛的药物浓度范围或复杂基质干扰 | 实现塞来昔布在血清中的高灵敏度、无标记检测,以支持治疗药物监测和个性化关节炎治疗 | 塞来昔布(一种非甾体抗炎药)在血清中的浓度 | 机器学习 | 关节炎 | 表面增强拉曼散射(SERS) | CNN | 拉曼光谱 | 涉及五种血药浓度的光谱数据集,具体样本数量未明确说明 | NA | GoogleNet, ResNet, VGG | 分类准确率 | NA |
| 3038 | 2025-12-14 |
In-situ NIR spectroscopy study on microgravity-induced articular cartilage degeneration with ResNet-18
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127188
PMID:41242109
|
研究论文 | 本研究利用近红外光谱结合深度学习模型,对微重力环境下关节软骨的退行性变化进行了原位监测与分类分析 | 首次将近红外光谱技术应用于微重力环境下关节软骨退行性变化的原位评估,并结合ResNet-18深度学习模型实现了高精度的多分类识别 | 研究基于尾部悬吊模拟微重力环境,可能与实际太空微重力条件存在差异;样本量相对有限 | 探究微重力环境下关节软骨的退行性变化,并开发一种原位、快速的软骨退化评估方法 | 关节软骨(模拟微重力环境下的尾部悬吊软骨样本) | 数字病理学 | 关节疾病 | 近红外光谱技术 | SVM, CNN | 光谱数据 | 控制组和尾部悬吊组(7、14、21天)的软骨样本 | NA | ResNet-18 | 准确率 | NA |
| 3039 | 2025-12-14 |
Identification of Pueraria lobata origin using terahertz precision spectroscopy and CNN-transformer hybrid network algorithm
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127212
PMID:41270687
|
研究论文 | 本研究提出了一种结合太赫兹光谱与CNN-Transformer混合网络的新方法,用于无损鉴别葛根的地理来源 | 首次将太赫兹光谱与CNN-Transformer混合网络结合用于中药材产地鉴别,并验证了光谱特征与生物活性成分的相关性 | 仅针对中国八个产区的样本进行研究,样本来源范围有限 | 开发一种基于太赫兹光谱和深度学习的中药材产地溯源方法 | 葛根(Pueraria lobata)样本 | 计算机视觉 | NA | 太赫兹光谱,高效液相色谱(HPLC) | CNN, Transformer | 光谱数据 | 来自中国八个地区的葛根样本 | NA | CNN-Transformer混合网络 | 准确率,F1分数 | NA |
| 3040 | 2025-12-14 |
Identification of early bruising degrees in blueberries using visible and near-infrared spectroscopy coupled with deep learning
2026-Mar-05, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
DOI:10.1016/j.saa.2025.127200
PMID:41273859
|
研究论文 | 本研究利用可见光和近红外光谱结合深度学习模型,识别蓝莓早期瘀伤程度 | 开发新型光谱系统收集高信噪比反射光谱,并首次结合CNN和TabTransformer深度学习模型进行蓝莓瘀伤程度识别 | 在1350-2200 nm波长范围内分类精度较低,可能由于细胞破坏和自由水释放影响水吸收带检测 | 识别蓝莓早期瘀伤程度以提升其经济价值 | 蓝莓 | 机器学习 | NA | 可见光和近红外光谱 | CNN, TabTransformer | 光谱数据 | NA | NA | CNN, TabTransformer | 准确率 | NA |