深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202601-202612] [清除筛选条件]
当前共找到 3238 篇文献,本页显示第 3201 - 3220 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
3201 2025-11-16
Advancing biomedical waste classification through a hybrid ensemble of deep Learning, reinforcement Learning, and differential evolution algorithms
2026-Jan-01, Waste management (New York, N.Y.)
研究论文 提出一种结合深度学习、强化学习和差分进化算法的混合集成模型,用于生物医学废物分类 首次将深度学习、强化学习和差分进化算法通过双异质集成方式结合,并开发了专用的生物分类机器Biosorter 仅在小型医疗中心进行实际部署验证,需要更大规模的应用测试 开发高效的生物医学废物分类系统,改善医疗废物管理 制药和生物医学废物,特别是感染性废物的分类 计算机视觉 NA 图像增强、集成图像分割、决策融合 CNN, 强化学习, 差分进化算法 图像 专有数据集和基准数据集 NA U-Net, Mask R-CNN, DeepLab Version 3 Plus, Inception Version 3, Residual Network 50, Mobile Network Version 2, Densely Connected Convolutional Network 121 准确率, 处理吞吐量, 系统可用性量表(SUS)评分 NA
3202 2025-11-15
Benchmarking AI-driven acoustic monitoring for floating marine debris: Challenges in deep learning-based debris extraction
2026-Jan, Marine pollution bulletin IF:5.3Q1
研究论文 评估主流深度学习模型在声纳图像中自动提取漂浮海洋垃圾的性能 首次系统评估深度学习模型在声纳图像中提取低对比度漂浮垃圾的性能,并引入包含1000张声纳图像的“严苛漂浮垃圾”数据集 数据稀缺性以及声学成像固有的物理特性(包括距离相关分辨率和视角敏感性)限制了模型性能 开发更强大的AI驱动系统用于自主监测漂浮海洋垃圾 声纳图像中的漂浮海洋垃圾(塑料袋、瓶子、金属罐和混合垃圾) 计算机视觉 NA 声纳成像技术 深度学习分割模型 声纳图像 1000张声纳图像,包含4类垃圾(塑料袋、瓶子、金属罐、混合垃圾),每张图像含2-4个手动标注实例 NA NA IoU(交并比) NA
3203 2025-11-15
Remote sensing and image analysis of macro-plastic litter: A review
2026-Jan, Marine pollution bulletin IF:5.3Q1
综述 本文综述了遥感技术和人工智能图像分析在宏观塑料垃圾检测领域的最新进展 系统整合了多种遥感平台(网络摄像头、无人机、气球、飞机和卫星)与AI图像分析技术在塑料垃圾监测中的联合应用,提出了量化指标标准化的重要观点 研究中存在量化指标不一致、环境干扰、分辨率限制和协议不统一等挑战,影响跨研究比较和数据协调 评估遥感技术和AI图像分析在海洋塑料污染监测中的应用效果和发展潜力 沿海、河流和其他水生环境中的宏观塑料垃圾 计算机视觉 NA 遥感技术、图像分析 深度学习模型 遥感图像 NA NA NA 垃圾覆盖面积、体积、重量、单位面积物品数量 NA
3204 2025-11-15
Predicting sediment contamination in Tunisia's coastal lagoons using an OP-LSTM deep learning model: A case study from the Bizerte basin, southwest Mediterranean region
2026-Jan, Marine pollution bulletin IF:5.3Q1
研究论文 本研究应用优化的长短期记忆深度学习模型预测突尼斯比塞大潟湖沉积物污染风险 首次将优化的LSTM模型应用于沿海潟湖沉积物污染预测,相比标准LSTM模型具有更高的预测精度 研究仅针对突尼斯比塞大盆地,结果可能不适用于其他地理环境 预测沿海潟湖沉积物污染风险,支持海岸带环境管理 突尼斯比塞大潟湖的沉积物样本 环境科学,深度学习 NA X射线衍射,原子吸收光谱,地球化学分析 LSTM 地球化学数据,矿物学数据 未明确样本数量,但包含空间变化的沉积物采样 NA OP-LSTM(优化的长短期记忆网络) RMSE,MSE,训练损失,R分数 NA
3205 2025-11-15
A comprehensive deep learning model for motor phenotypes of Parkinson's disease using three-dimensional kinect V2 detectors
2026-Jan, Gait & posture IF:2.2Q2
研究论文 开发结合骨架步态能量图像与相对距离角度的混合CNN-LSTM深度学习模型,用于帕金森病运动表型分类 首次将骨架步态能量图像与相对距离角度特征结合,并采用混合CNN-LSTM架构提升帕金森病运动表型分类性能 未明确说明样本规模和数据采集环境的具体限制 提高帕金森病不同运动表型的诊断准确率 帕金森病患者(分为非姿势不稳步态障碍组和姿势不稳步态障碍组)与健康对照组 计算机视觉 帕金森病 三维Kinect V2检测器 CNN, LSTM, CNN-LSTM 骨架步态能量图像,相对距离和角度数据 NA NA CNN-LSTM混合架构 AUC, 分类准确率 NA
3206 2025-11-14
Deep learning-based cross-device standardization of surface-enhanced Raman spectroscopy for enhanced bacterial recognition
2026-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 提出深度学习框架解决便携式与实验室级拉曼光谱设备间的标准化问题,提升细菌识别性能 开发SERS-D2DNet序列到序列网络实现跨设备光谱标准化,结合轻量级SuperRaman网络实现高效细菌分类 仅使用20种分析物类别,设备类型有限(4种便携设备+1种实验室设备) 解决便携式与实验室级拉曼光谱设备间的标准化问题,提升病原体识别可靠性 临床相关细菌特征和参考化合物的SERS光谱数据 机器学习 细菌感染 表面增强拉曼光谱(SERS) 序列到序列神经网络,超操作神经网络(Super-ONN) 光谱数据 20种分析物类别的SERS光谱数据 NA SERS-D2DNet, SuperRaman 平均绝对误差(MAE), 相关系数(R), 分类准确率 NA
3207 2025-11-14
Integrating spectroscopy with machine learning and deep learning for monitoring mung plant responses to silicon dioxide nanoparticles
2026-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究结合共聚焦显微拉曼光谱、紫外-可见光谱与机器学习和深度学习算法,评估绿豆植物对二氧化硅纳米颗粒的生化响应 首次将光谱技术与多种计算算法集成,建立非侵入式监测植物-纳米材料相互作用的框架 仅针对绿豆植物和二氧化硅纳米颗粒进行研究,未验证其他植物或纳米材料 开发监测植物对纳米颗粒生化响应的新方法 暴露于不同浓度二氧化硅纳米颗粒的绿豆植物 机器学习 NA 共聚焦显微拉曼光谱, 紫外-可见光谱 LDA, AGNES, DBSCAN, k-means, 随机森林, 支持向量机, 深度学习 光谱数据 不同浓度二氧化硅纳米颗粒处理的绿豆植物样本 NA NA 准确率, RI NA
3208 2025-11-14
Analysis of moldy peanuts by Raman hyperspectral imaging
2026-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 利用拉曼高光谱成像技术分析混合品种霉变花生 结合一维光谱数据和二维空间信息,采用s-GoogLeNet深度学习模型实现混合品种霉变花生的高精度检测 仅针对五种特定花生品种进行研究,未涉及其他品种或更广泛的应用场景 开发霉变花生的快速检测方法以提高粮食安全 混合品种霉变花生(包括白沙、伯克、红沙、花红和花衣红火五个品种) 计算机视觉 NA 拉曼高光谱成像 深度学习,传统机器学习 高光谱图像 五种花生品种的混合样本 NA s-GoogLeNet 准确率,F1分数 NA
3209 2025-11-14
Deep neural network-based detection of lead contamination via Förster resonance energy transfer in live cells
2026-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究开发了一种基于FRET生物传感器和深度学习模型的便携式铅污染检测方法 首次将FRET生物传感器与EfficientNet深度学习模型结合,实现现场可部署的铅污染水平分类 30分钟和60分钟反应时间的AUC分别为69.8%和72.0%,识别准确率有待进一步提升 开发一种能够现场检测铅污染水平的便携式检测平台 HEK293T活细胞中的铅离子浓度 计算机视觉 重金属中毒 FRET(Förster共振能量转移)、荧光显微镜、活细胞成像 CNN 图像 1131对图像(30分钟和60分钟反应时间) NA EfficientNet AUC, Youden's J统计量, 损失函数 NA
3210 2025-11-14
Deep learning with multimodal Raman spectral fusion framework: An analytical approach for microalgal lipid quantification
2026-Feb-15, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
研究论文 本研究提出了一种融合多模态拉曼光谱与深度学习的微藻脂质定量分析方法 创新性地将深度学习与多模态拉曼成像相结合,构建了基于双分支注意力机制的卷积神经网络,实现了微藻单细胞脂质积累的精确动态调控 NA 开发精确、绿色、动态的微藻脂质定量检测方法,阐明超声波诱导脂质合成机制 微藻细胞 机器学习 NA 多频超声波、拉曼光谱、RGB成像 CNN 拉曼光谱数据、RGB图像 NA NA 双分支注意力卷积神经网络(DBACNN) 决定系数(R)、均方根误差(RMSE) NA
3211 2025-11-14
A Shape and Size-Scaled Deep Learning Brain Injury Model for Near Real-Time Dynamic Impact Simulation
2026-Feb-01, Journal of biomechanical engineering
研究论文 本研究开发了一种形状和尺寸可缩放的深度学习脑损伤模型,用于近实时动态冲击模拟 将通用的50百分位成年男性脑模型扩展到适用于男性、女性和青少年的个性化替代模型,并引入三个缩放因子作为额外输入 模型基于模拟数据训练,需要进一步验证真实世界应用的准确性 开发快速估计脑变形的高效深度学习脑损伤模型 创伤性脑损伤(TBI)中的脑变形和轴索损伤 数字病理 创伤性脑损伤 深度学习,有限元模拟 CNN 体素化脑-颅骨相对位移数据 1363个基于随机缩放Worcester头部损伤模型V1.0的模拟头部冲击样本 NA 多任务卷积神经网络 R2, RMSE, 线性回归斜率, Pearson相关系数, 成功率 笔记本电脑(<1秒) vs 高端集群(>30分钟)
3212 2025-11-14
MultiExCam: A multi approach and explainable artificial intelligence architecture for skin lesion classification
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种用于皮肤病变分类的多方法可解释人工智能架构MultiExCam 首次实现深度学习与机器学习的真正混合集成,采用自适应集成架构学习个性化决策策略,结合GradCAM和SHAP提供全面可解释性 未明确说明计算资源需求和模型训练时间 开发能够同时提供高诊断性能和临床可解释性的皮肤癌检测AI系统 皮肤病变图像分类 计算机视觉 皮肤癌 数字成像处理 CNN, 集成学习, 前馈神经网络 皮肤镜图像, 深度学习特征, 手工统计特征 三个数据集(HAM10000, ISIC, MED-NODE) NA 卷积神经网络, 前馈神经网络(带门控和注意力机制) AUC, F1-score NA
3213 2025-11-14
A deep learning model leveraging semantic features fusion for DNase I hypersensitive sites identification in the human genome
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出多种深度学习模型用于识别人类基因组中的DNase I超敏感位点 首次将语义特征融合表示集成到模型中,有效捕捉复杂DHS序列中的局部和全局模式及时空依赖关系 未提及模型在独立验证集上的泛化能力及计算效率分析 开发高性能、低成本的DHS识别计算方法 人类基因组中的DNase I超敏感位点 生物信息学 乳腺癌, 冠状动脉疾病, 阿尔茨海默病, 自身免疫疾病, 神经系统疾病 深度学习 CNN, GRU 基因组序列数据 NA NA 1维CNN, CNN-GRU融合模型, CNN-kmer融合模型, CNN-GRU-kmer融合模型 准确率, 灵敏度, 特异性, MCC, AUC ROC, AUC PR NA
3214 2025-11-14
MEMOL: Mixture of experts for multimodal learning through multi-head attention to predict drug toxicity
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种基于多头注意力的多模态混合专家模型MEMOL,用于预测药物毒性 将稀疏混合专家机制直接集成到注意力机制中,通过自注意力和交叉注意力增强多模态特征提取与融合 NA 开发精确的药物毒性预测方法 分子图像、分子图和分子指纹三种分子模态 机器学习 NA 多模态学习 混合专家模型,多头注意力 分子图像,分子图,分子指纹 NA NA MEMOL AUROC,AUPRC NA
3215 2025-11-14
Non-invasive urine flow dynamics characterization of pediatric hydronephrosis based on deep learning and computational fluid dynamics
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 基于深度学习和计算流体动力学开发非侵入性尿液流动动力学表征方法用于小儿肾积水的诊断和预后评估 首次结合深度学习和CFD技术从MRU数据重建患者特异性三维肾脏模型并模拟尿液流动动力学 方法依赖于MRU图像质量,CFD模拟需要专业设置和验证 开发非侵入性尿液流动动力学计算方法以改善小儿肾积水诊断和预后评估 小儿肾积水患者的MRU图像数据和尿液流动特性 医学影像分析, 计算流体动力学 小儿肾积水 磁共振尿路造影, 计算流体动力学 深度学习模型 医学影像 NA NA NA 尿液流速比, 压力分布比较 NA
3216 2025-11-14
Multimodal Nomogram Combining Multiparametric MRI, Functional Subsets of Peripheral Lymphocytes and PI-RADS Can Predict Risk Stratification of Prostate Cancer
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 开发结合多参数MRI、外周淋巴细胞功能亚群和PI-RADS的多模态列线图用于前列腺癌风险分层预测 首次探索非侵入性三分法风险分层,整合多模态数据构建预测模型替代传统PSA方法 回顾性研究,样本量有限(110例患者),仅来自单一医疗中心 开发自动化可靠的前列腺癌风险分层工具以指导临床决策 前列腺癌患者 数字病理 前列腺癌 多参数MRI,外周淋巴细胞检测,PI-RADS评分 深度学习,放射组学 医学影像,临床数据 110例患者 NA 列线图模型 AUC,F1分数,灵敏度,特异性 NA
3217 2025-11-14
Detection of nocturnal epileptic seizures using a wearable armband: A deep learning approach combining accelerometry and photoplethysmography signals
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种基于深度学习的穿戴式臂环系统,结合加速度和光电容积脉搏波信号检测夜间癫痫发作 首次将CNN-LSTM与注意力机制结合用于穿戴式设备的多模态信号癫痫检测,采用两步式方法显著降低数据量 样本量相对有限(68名患者),假阳性率较高(0.165/小时),阳性预测值较低(0.334) 开发家庭环境下夜间癫痫发作的自动检测系统,降低癫痫猝死风险 68名患有严重癫痫发作的患者 医疗健康监测 癫痫 三轴加速度计,光电容积脉搏波 CNN-LSTM 时间序列信号数据 68名患者,788次夜间记录(6304小时),1846次严重发作 NA CNN-LSTM with attention mechanism 灵敏度,假警报率,ROC曲线下面积,准确率,阳性预测值 NA
3218 2025-11-14
Lightweight element-wise product enhanced neural network for efficient arrhythmia detection on embedded devices
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种轻量级元素乘积增强神经网络,用于嵌入式设备上高效的心律失常检测 引入元素乘积融合机制结合双路径特征,采用纺锤形架构与深度可分离卷积,显著降低模型参数和计算成本 NA 开发适用于资源受限嵌入式设备的实时心律失常检测模型 心电图信号数据 机器学习 心血管疾病 ECG信号分析 CNN 信号数据 MIT-BIH、SVDB、INCART和PTB数据库 NA 深度可分离卷积,纺锤形架构 准确率,精确率,召回率,F1分数,计算复杂度,推理时间,功耗 树莓派5,Android 10 x86虚拟机
3219 2025-11-14
Self-supervised learning and hybrid deep models for predicting the progression of Fuchs' endothelial corneal dystrophy after cataract surgery
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出一种基于自监督学习和混合深度学习模型的框架,用于预测白内障手术后Fuchs角膜内皮营养不良的进展 整合临床领域知识、集成学习和自监督学习,提出结合RANSAC算法和双分支设计的混合CNN架构,采用Polar Pooling模拟临床推理 对标注数据的依赖仍然存在,尽管通过自监督学习有所减少 改善Fuchs角膜内皮营养不良的预后预测,支持白内障手术规划 Fuchs角膜内皮营养不良患者 医学影像分析 角膜疾病 Scheimpflug断层成像 CNN, 自监督学习 医学影像 多中心数据集 NA 混合卷积神经网络, 双分支设计 AUC NA
3220 2025-11-14
NN-PCP: Screening phenotype-related core pathways to construct a prostate cancer metastasis prediction model based on multiple types of mutation data
2026-Jan, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 提出基于表型相关核心通路的神经网络模型NN-PCP,利用多种突变数据预测前列腺癌转移 开发了结合改进的过表征分析和基因集富集分析的表型相关核心通路筛选方法,构建具有双差分层级的神经网络架构 NA 提高基于突变数据的前列腺癌转移预测准确性 前列腺癌患者突变数据 机器学习 前列腺癌 突变数据分析 神经网络 基因突变数据 NA NA NN-PCP(包含IORA驱动模块、IGSEA驱动模块和双差分层级) 准确率,精确率,召回率,F1分数,AUC,AUPR NA
回到顶部