本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 421 | 2025-12-27 |
Attention-Based Multimodal Deep Learning for Uveal Melanoma Classification Using Ultra-Widefield Fundus Images and Ocular Ultrasound
2026-Feb, Ophthalmology science
IF:3.2Q1
DOI:10.1016/j.xops.2025.100985
PMID:41439217
|
研究论文 | 本研究开发并评估了一种基于注意力机制的多模态深度学习模型,用于整合超广角眼底摄影和B超图像,以实现葡萄膜黑色素瘤和脉络膜痣的自动分类 | 首次提出结合超广角眼底摄影和B超图像,并采用注意力机制进行多模态融合,以提升葡萄膜黑色素瘤和脉络膜痣的分类性能 | 研究样本量较小(仅174名患者),且为单中心回顾性研究,可能影响模型的泛化能力 | 开发一种自动分类葡萄膜黑色素瘤和脉络膜痣的深度学习模型 | 葡萄膜黑色素瘤和脉络膜痣患者 | 数字病理学 | 葡萄膜黑色素瘤 | 超广角眼底摄影,B超成像 | 深度学习模型 | 图像 | 174名患者(93例葡萄膜黑色素瘤,81例脉络膜痣),每名患者包含超广角眼底照片和横纵两个方向的B超图像 | NA | 注意力机制融合模型 | 准确率,F1分数,AUC | NA |
| 422 | 2025-12-27 |
GI-ScreenNet v2: A Modular Framework for Gastrointestinal Disease Detection Based on an Integrated Transfer Learning
2026-Feb, The international journal of medical robotics + computer assisted surgery : MRCAS
DOI:10.1002/rcs.70128
PMID:41449645
|
研究论文 | 本文提出GI-ScreenNet v2,一个基于集成和迁移学习的多骨干网络框架,用于胃肠道疾病检测 | 通过标准化接口支持任意骨干网络,并利用交叉注意力机制动态整合多模型特征,实现灵活且高效的表示学习 | 现有系统通常不够灵活且技术复杂,限制了临床采用 | 开发一个统一的框架,用于胃肠道疾病的早期筛查和AI辅助诊断 | 无线胶囊内窥镜(WCE)图像 | 计算机视觉 | 胃肠道疾病 | 无线胶囊内窥镜(WCE) | 集成学习, 迁移学习 | 图像 | 基于KvasirV2数据集 | NA | 多骨干网络框架 | 准确率 | NA |
| 423 | 2025-12-27 |
Towards precision medicine for otology and neurotology: Machine learning applications and challenges
2026-Jan, Hearing research
IF:2.5Q1
DOI:10.1016/j.heares.2025.109473
PMID:41274259
|
综述 | 本文批判性地综述了2013年至2025年间机器学习和深度学习在耳科及神经耳科领域的研究应用、挑战及未来方向 | 重点强调了新兴技术(如Whisper语音识别模型、大语言模型)及其在多模态数据集(影像、听力数据、患者报告结果)整合中的应用,以改进诊断和治疗策略 | 模型缺乏标准化、泛化能力有限、多模态数据整合框架不完善,阻碍了严谨且可重复的实施 | 探索人工智能(机器学习、深度学习、大语言模型)在耳科及神经耳科精准医疗中的应用潜力,以促进基于个体数据的诊断、预后和治疗决策 | 耳鸣、人工耳蜗植入及其他耳科或神经耳科疾病 | 机器学习 | 耳科及神经耳科疾病 | NA | 机器学习, 深度学习, 大语言模型 | 多模态数据(影像、听力数据、患者报告结果) | NA | NA | Whisper | NA | NA |
| 424 | 2025-12-27 |
3D Otoscope: toward an extra diagnostic dimension for middle-ear related issues
2026-Jan, Hearing research
IF:2.5Q1
DOI:10.1016/j.heares.2025.109485
PMID:41308561
|
研究论文 | 本文介绍了一种可工业制造的数字耳镜,旨在测量鼓膜的三维形状,同时兼容标准检查程序 | 通过集成单次表面重建策略(从经典傅里叶轮廓术到现代深度学习方法),消除了多模式投影需求,并在深度学习方法中避免了相位解缠,从而简化硬件设置 | NA | 开发一种用于鼓膜三维形状测量的数字耳镜,以评估其早期病理指标 | 鼓膜的三维形状和活动性 | 计算机视觉 | 中耳相关疾病 | 光学轮廓术 | 深度学习 | 图像 | NA | NA | NA | NA | NA |
| 425 | 2025-12-27 |
Automated high-fidelity 3D reconstruction of middle-ear ossicles from low-resolution clinical CT using a deep learning pipeline
2026-Jan, Hearing research
IF:2.5Q1
DOI:10.1016/j.heares.2025.109492
PMID:41344151
|
研究论文 | 本研究验证了一种从低分辨率临床CT图像自动生成高保真中耳听小骨3D模型的深度学习框架 | 提出了一种结合YOLOv5x、深度反向投影网络和带“提示通道”的2.5D U-Net的三阶段自动化流水线,能够从稀疏数据中鲁棒地重建完整解剖结构 | 未明确说明训练数据的具体来源和多样性,外部验证集的规模可能有限 | 开发一种快速、准确且鲁棒的自动化工具,从标准临床CT生成患者特异性的中耳听小骨3D模型 | 中耳听小骨(ossicles) | 医学影像分析 | 耳科疾病 | 临床CT成像 | 深度学习 | CT图像 | 未明确说明具体样本数量,但提及使用了外部推理集进行验证 | 未明确说明,但提及YOLOv5x、DBPN、U-Net等架构 | YOLOv5x, Deep Back-Projection Network (DBPN), 2.5D U-Net | mAP50, Dice系数, 平均表面距离 | 未明确说明具体计算资源 |
| 426 | 2025-12-27 |
Lower Limb Joints Torques Continuous Estimate Model Based on Muscle Synergy for Patients With Motor Dysfunction
2026, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
IF:4.8Q1
DOI:10.1109/TNSRE.2025.3645234
PMID:41411354
|
研究论文 | 本研究为下肢运动功能障碍患者开发了一种基于肌肉协同作用的关节扭矩连续估计模型,用于康复外骨骼机器人的辅助控制 | 结合肌肉协同理论和深度学习,在神经控制层面建立了肌电信号与关节扭矩的关系模型,并采用对抗迁移学习优化模型以适应长期使用 | 仅涉及八名患者,样本量较小,且仅针对髋关节和膝关节进行评估 | 为康复外骨骼机器人提供准确可靠的下肢关节扭矩估计,以实现按需辅助控制 | 下肢运动功能障碍患者 | 机器学习 | 运动功能障碍 | 表面肌电图 | 深度学习 | 肌电信号 | 八名下肢运动功能障碍患者 | NA | 自注意力机制 | 决策系数 | NA |
| 427 | 2025-12-27 |
Assessing the relation between protein phosphorylation, AlphaFold3 models, and conformational variability
2026-Jan, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70376
PMID:41432299
|
研究论文 | 本文系统评估了AlphaFold模型(包括AF2、AF3-non phospho和AF3-phospho)在预测磷酸化诱导的蛋白质结构多样性方面的能力 | 首次系统评估AlphaFold模型(特别是AF3-phospho)在捕捉磷酸化驱动的构象变化方面的表现,揭示了其局限性 | 所有模型主要与主导结构状态对齐,往往未能捕捉磷酸化特异性构象,AF3-phospho预测仅提供有限改进 | 评估深度学习模型(特别是AlphaFold)预测磷酸化诱导的蛋白质结构变化的能力 | 蛋白质及其磷酸化修饰 | 机器学习 | 癌症,阿尔茨海默病 | 深度学习,蛋白质结构预测 | AlphaFold (AF2, AF3) | 蛋白质结构数据,实验构象集合 | NA | NA | AlphaFold2, AlphaFold3 | NA | NA |
| 428 | 2025-12-27 |
Assessing the validity of leucine zipper constructs predicted by AlphaFold
2026-Jan, Protein science : a publication of the Protein Society
IF:4.5Q1
DOI:10.1002/pro.70438
PMID:41432297
|
研究论文 | 本研究评估了AlphaFold预测的亮氨酸拉链结构域的有效性,特别是针对AP-1转录因子如Fos和Jun的二聚体 | 利用超过2000个实验验证的人类亮氨酸拉链数据,首次系统评估AlphaFold在预测亮氨酸拉链二聚体界面及区分可能/不可能二聚体方面的能力 | AlphaFold可能高置信度预测出在体内因静电排斥而无法形成的二聚体(如FosB同源二聚体),揭示了其高置信度但低准确性的预测案例 | 评估AI驱动的蛋白质结构预测方法(如AlphaFold)在亮氨酸拉链结构域建模中的有效性和局限性 | AP-1转录因子(如Fos和Jun)的亮氨酸拉链结构域及超过2000个人类亮氨酸拉链 | 结构生物学 | NA | AlphaFold2, AlphaFold3, 蛋白质结构预测 | 深度学习 | 氨基酸序列, 多序列比对 | 超过2000个实验验证的人类亮氨酸拉链 | AlphaFold | AlphaFold2, AlphaFold3 | NA | NA |
| 429 | 2025-12-27 |
Automated detection of zygomatic fractures on spiral computed tomography using a deep learning model
2026-Jan, International journal of oral and maxillofacial surgery
IF:2.2Q2
DOI:10.1016/j.ijom.2025.07.007
PMID:40774874
|
研究论文 | 本研究评估了YOLOv8深度学习模型在自动检测颧骨骨折方面的性能 | 首次将YOLOv8模型应用于颧骨骨折的自动检测,并针对七种骨折类型进行了详细性能评估 | 研究未提及模型在其他数据集或临床环境中的泛化能力,且样本来源单一 | 评估深度学习模型在自动检测颧骨骨折方面的准确性和有效性 | 颧骨骨折的计算机断层扫描图像 | 计算机视觉 | 颧骨骨折 | 螺旋计算机断层扫描 | YOLOv8 | 图像 | 13,988个轴向切片和14,107个冠状切片 | NA | YOLOv8 | 准确率, 召回率, 平均精度, F1分数, AUC | NA |
| 430 | 2025-12-26 |
Association of a Lifestyle Risk Index With Visceral and Subcutaneous Adipose Tissue in the German National Cohort (NAKO)
2026-Jan, Obesity (Silver Spring, Md.)
DOI:10.1002/oby.70071
PMID:41261047
|
研究论文 | 本研究探讨了生活方式风险指数与内脏和皮下脂肪组织的关系,基于德国国家队列的横断面数据 | 结合多种生活方式因素构建风险指数,并利用深度学习技术从全身MRI中自动分割内脏脂肪组织,分析其与生活方式的关系 | 研究为横断面设计,无法确定因果关系;样本可能受自我报告偏倚影响;BMI可能混淆生活方式与内脏脂肪的关联 | 评估生活方式风险指数与肥胖指标(特别是内脏脂肪组织)的关联 | 德国国家队列中30,920名符合条件的参与者,年龄48.2±12.2岁 | 数字病理学 | 心血管疾病 | 磁共振成像(MRI),深度学习图像分割 | 深度学习模型 | 图像(MRI扫描) | 30,920名参与者(来自超过205,000名合格参与者),其中18,508名有完整数据 | NA | NA | 调整后的几何均值,95%置信区间 | NA |
| 431 | 2025-12-26 |
Effects of disease duration and antipsychotics on brain age in schizophrenia
2026-Jan, Schizophrenia research
IF:3.6Q1
DOI:10.1016/j.schres.2025.11.008
PMID:41274179
|
研究论文 | 本研究探讨了精神分裂症患者大脑加速衰老的现象,并评估了抗精神病药物对此的影响 | 使用两种不同的机器学习模型(包括一种基于Transformer的模型)来增强大脑年龄预测的鲁棒性,并首次在双相情感障碍患者中比较了接受与未接受抗精神病药物治疗对大脑年龄差距的影响 | 研究为横断面设计,无法确定大脑衰老的时间动态,需要纵向研究来澄清 | 调查精神分裂症中大脑加速衰老的进展性以及抗精神病药物的潜在作用 | 首次发作精神病患者、健康对照者以及接受与未接受抗精神病药物治疗的双相情感障碍患者 | 机器学习 | 精神分裂症 | 神经影像学 | Transformer, 深度学习模型 | 神经影像数据 | NA | NA | Transformer, 深度学习模型 | NA | NA |
| 432 | 2025-12-26 |
Deep learning for optical misalignment diagnostics in multi-lens imaging systems
2026-Jan-01, Optics letters
IF:3.1Q2
DOI:10.1364/OL.578126
PMID:41442380
|
研究论文 | 本文提出了两种基于深度学习的逆向设计方法,用于仅通过光学测量诊断多镜头成像系统中的光学错位问题 | 开发了两种互补的深度学习模型,利用光线追踪点图或灰度合成相机图像,实现多镜头系统错位的自动化诊断,无需传统专用设备 | NA | 开发自动化、可扩展的光学错位诊断方法,以改进多镜头成像系统的制造和质量控制流程 | 多镜头成像系统,包括6镜头摄影定焦镜头以及两镜头和六镜头系统 | 计算机视觉 | NA | 光线追踪,物理模拟管道 | 深度学习模型 | 光学测量数据,包括光线追踪点图和灰度合成相机图像 | NA | NA | NA | 平均绝对误差(对于横向平移为0.031 mm,对于倾斜为0.011) | NA |
| 433 | 2025-12-25 |
Diabetes and longitudinal changes in deep learning-derived measures of vertebral bone mineral density using conventional CT: the Multi-Ethnic Study of Atherosclerosis
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04995-2
PMID:40728733
|
研究论文 | 本研究探讨了糖尿病与通过常规胸部CT深度学习模型测量的椎体骨密度纵向变化之间的关联,并评估了肾功能对此关系的影响 | 首次在纵向研究中结合深度学习模型从常规CT中提取椎体骨密度,并分析糖尿病状态及肾功能(特别是糖尿病肾病)对骨密度变化的交互影响 | 研究未纳入骨微结构评估或骨折结局数据,且依赖于常规CT而非专用骨密度扫描,可能限制对糖尿病骨折风险机制的全面理解 | 探究糖尿病与椎体骨密度纵向变化的关系,并评估肾功能在此过程中的调节作用 | 来自动脉粥样硬化多种族研究肺研究的1046名参与者,包括糖尿病患者与非糖尿病患者 | 数字病理学 | 糖尿病 | 常规胸部CT扫描 | 深度学习模型 | 医学影像(CT图像) | 1046名参与者,在两次检查(2010-2012年和2016-2018年)中进行纵向测量 | NA | NA | 骨密度变化率(β值,单位mg/cm3/年)及95%置信区间 | NA |
| 434 | 2025-12-25 |
Automated 3D segmentation of rotator cuff muscle and fat from longitudinal CT for shoulder arthroplasty evaluation
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-04991-6
PMID:40782188
|
研究论文 | 本研究开发并验证了一种用于在肩关节置换术患者的纵向CT扫描中自动三维分割肩袖肌肉的深度学习模型,以量化肌肉体积和脂肪分数 | 首次开发了用于肩关节置换术患者纵向CT扫描中肩袖肌肉自动三维分割的深度学习模型,实现了肌肉体积和脂肪分数的自动化量化分析 | 模型仅在53名肩关节置换术患者的CT扫描数据上进行训练和测试,样本量相对有限;研究主要关注肩袖肌肉,未涉及其他相关组织结构 | 开发自动化工具用于肩关节置换术患者的肩袖肌肉健康评估,以支持患者选择、康复规划和手术决策 | 接受全肩关节置换术的患者 | 医学图像分析 | 肩关节疾病 | CT扫描 | 深度学习 | 3D CT图像 | 53名患者用于模型开发,172名患者用于量化分析 | 未明确说明 | DeepLabV3+, ResNet50 | Dice相似系数, 平均对称表面距离, 95百分位Hausdorff距离, 相对绝对体积差异 | NA |
| 435 | 2025-12-25 |
Objective Assessment of Disorders of Consciousness Based on EEG Temporal and Spectral Features
2026-Jan, International journal of neural systems
IF:6.6Q1
DOI:10.1142/S0129065725500674
PMID:40985067
|
研究论文 | 本研究基于听觉oddball范式采集的EEG数据,通过提取时频域、连接性和非线性动力学特征,系统比较多种机器学习和深度学习分类器,以客观评估意识障碍(DOC)患者的意识状态 | 首次在任务态EEG数据中综合识别多域生物标志物,并系统比较包括SVM、RF、XGBoost、EEGNet和ShallowConvNet在内的多种分类器,提出集成投票模型提升分类性能 | 未提及样本量的具体限制或外部验证结果,可能影响模型的泛化能力 | 开发基于任务态EEG数据的意识障碍(DOC)客观评估方法 | 最小意识状态(MCS)患者、植物状态(VS)患者和健康对照组(HC) | 机器学习 | 意识障碍 | EEG(脑电图) | SVM, LDA, RF, XGBoost, DT, CNN | EEG信号 | 未明确提及具体样本数量 | NA | EEGNet, ShallowConvNet | 分类性能(未指定具体指标如准确率、F1分数等) | NA |
| 436 | 2025-12-25 |
Trabecular bone analysis: ultra-high-resolution CT goes far beyond high-resolution CT and gets closer to micro-CT (a study using Canon Medical CT devices)
2026-Jan, Skeletal radiology
IF:1.9Q3
DOI:10.1007/s00256-025-05001-5
PMID:40738977
|
研究论文 | 本研究评估了Canon Medical不同分辨率CT(高分辨率、超高分辨率、超超高分辨率)在测量骨小梁微结构参数方面的准确性,以微CT为参考标准 | 首次系统比较了超高分辨率CT和超超高分辨率CT在骨小梁分析中的性能,并评估了深度学习重建技术对测量结果的影响 | 研究样本量较小(16个尸体胫骨远端骨骺),且仅使用单一品牌(Canon Medical)的CT设备,可能限制结果的普适性 | 评估不同分辨率CT技术在骨小梁微结构参数测量中的准确性 | 尸体胫骨远端骨骸的骨小梁微结构 | 医学影像 | NA | CT成像(高分辨率CT、超高分辨率CT、超超高分辨率CT)、深度学习重建、微CT | NA | CT图像 | 16个尸体胫骨远端骨骺 | NA | NA | 骨小梁厚度、骨小梁分离度、骨体积/总体积的测量值与微CT参考值的比值 | NA |
| 437 | 2025-12-25 |
Gastric Neoplasm Detection at Contrast-enhanced CT with Deep Learning
2026-Jan, Radiology. Artificial intelligence
DOI:10.1148/ryai.250145
PMID:41295087
|
研究论文 | 本研究开发并验证了一种名为GANDA的深度学习模型,用于在临床常规增强CT中自动检测、诊断和分割胃部肿瘤 | 提出了一种联合分割和分类的三维深度学习模型(GANDA),用于胃部肿瘤的自动化检测与诊断,并在多个内部、外部及真实世界测试队列中验证了其性能,且诊断准确率显著高于经验丰富的放射科医生 | 研究为回顾性设计;模型在内部测试队列中的分割性能(Dice系数)对于胃癌和非胃癌分别为0.52和0.45,仍有提升空间 | 开发并验证一种基于深度学习的自动化工具,用于在增强CT图像中检测、诊断和分割胃部肿瘤 | 胃部肿瘤(胃癌及非胃癌)患者 | 数字病理学 | 胃癌 | 对比增强CT | 深度学习模型 | 三维CT图像 | 共4606名患者(来自多个中心,时间跨度为2007年至2023年) | NA | 联合分割和分类的三维深度学习模型 | 敏感性, 特异性, 准确率, 受试者工作特征分析, Dice系数 | NA |
| 438 | 2025-12-25 |
Transformer-based multimodal fusion model predicts early hematoma expansion in spontaneous cerebral hemorrhage: A multicenter study
2026-Jan, European journal of radiology
IF:3.2Q1
DOI:10.1016/j.ejrad.2025.112465
PMID:41135231
|
研究论文 | 本研究开发了一种基于Transformer的多模态融合模型,用于预测自发性脑出血患者的早期血肿扩张 | 首次将深度学习、影像组学和临床因素通过Transformer架构进行多模态融合,用于早期血肿扩张的预测 | 样本量相对有限(共465例),且为回顾性研究,需要进一步前瞻性验证 | 开发精准预测自发性脑出血患者早期血肿扩张的预测模型 | 自发性脑出血患者 | 医学影像分析 | 脑出血 | 非增强计算机断层扫描 | Transformer, SVM, LR, RF, AdaBoost | 图像, 临床数据 | 465例患者(训练集315例,内部测试集80例,外部测试集70例) | NA | Transformer | AUC, 校准曲线 | NA |
| 439 | 2025-12-25 |
Dual energy CT and deep learning for an automated volumetric segmentation of the major intracranial tissues: Feasibility and initial findings
2026-Jan, Medical physics
IF:3.2Q1
DOI:10.1002/mp.70217
PMID:41423435
|
研究论文 | 本研究评估了使用深度学习模型和双能CT虚拟单能图像对颅内灰质、白质和脑脊液进行自动体积分割的可行性 | 利用双能CT的虚拟单能图像(VMI)和深度学习模型(特别是U-Net++ (Aug))进行颅内组织分割,相比传统CT方法,通过光谱信息增强了分割性能 | 样本量较小(仅26名患者),且研究为初步可行性验证,需要更大规模的研究来确认结果的普适性 | 评估基于CT和深度学习的颅内组织自动体积分割的可行性,以在MRI不适用时改善患者管理 | 颅内灰质(GM)、白质(WM)和脑脊液(CSF) | 计算机视觉 | NA | 双能CT、虚拟单能成像(VMI)、T1加权磁共振成像 | 深度学习 | 图像 | 26名患者(21名用于训练/验证,5名用于测试) | NA | U-Net++, U-Net | Dice相似系数(DSC)、体积准确度 | NA |
| 440 | 2025-12-25 |
Artificial intelligence in modern clinical practice (Review)
2026 Jan-Feb, Medicine international
DOI:10.3892/mi.2025.289
PMID:41424576
|
综述 | 本文综述了人工智能在现代临床实践中的应用、机遇与挑战 | 系统整合了近期研究成果,全面探讨了AI在临床决策支持、影像分析、精准医疗等领域的角色,并强调了实施中的关键障碍 | 作为综述文章,未进行原始数据收集或模型验证,主要依赖现有文献分析 | 讨论人工智能在现代临床实践中的作用,并突出未来的机遇与挑战 | 临床实践中的AI应用,包括医生、患者及医疗系统 | NA | NA | NA | NA | 临床数据 | NA | NA | NA | NA | NA |