深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期:202602-202602] [清除筛选条件]
当前共找到 1010 篇文献,本页显示第 681 - 700 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
681 2026-02-07
SaccpaNet: A Separable Atrous Convolution- Based Cascade Pyramid Attention Network to Estimate Body Landmarks Using Cross-Modal Knowledge Transfer for Under-Blanket Sleep Posture Classification
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文开发了一种基于深度相机的睡眠姿势监测与分类系统,用于家庭或社区环境,并设计了一个深度学习模型以应对毯子干扰 提出了SaccpaNet,一种结合可分离空洞卷积的金字塔注意力网络,通过跨模态知识转移(从RGB图像预训练到深度图像)和创新的数据增强技术(如类内混合和覆盖翻转切割)来提高模型在毯子干扰下的鲁棒性 研究仅在150名参与者的数据集上进行,样本量相对有限,且毯子条件可能未覆盖所有现实场景 开发一个能够抵抗毯子干扰的深度相机睡眠姿势分类系统,用于家庭或社区环境中的睡眠监测 睡眠姿势分类,特别是针对毯子覆盖条件下的身体关键点估计和姿势识别 计算机视觉 NA 深度相机成像 CNN 深度图像 150名参与者,执行七种睡眠姿势,覆盖四种毯子条件 NA SaccpaNet(基于可分离空洞卷积的级联金字塔注意力网络),可能包含残差网络作为骨干 PCK@0.1, F1-score, 准确率 NA
682 2026-02-07
Neuro-BERT: Rethinking Masked Autoencoding for Self-Supervised Neurological Pretraining
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于傅里叶域掩码自编码的自监督预训练框架Neuro-BERT,用于神经信号处理 引入了傅里叶反演预测(FIP)预训练任务,利用傅里叶域中的频率和相位分布来揭示复杂的神经活动,无需依赖精心设计的数据增强或孪生结构 未明确说明预训练数据的具体规模或多样性限制,以及模型在更广泛神经信号任务中的泛化能力 解决神经信号处理中标注数据稀缺的问题,通过自监督预训练提升下游任务的性能 神经信号(如脑电图等生理信号) 机器学习 NA 傅里叶变换、掩码自编码 Transformer 神经信号(时序数据) NA NA Transformer编码器 NA NA
683 2026-02-07
MRGCDDI: Multi-Relation Graph Contrastive Learning Without Data Augmentation for Drug-Drug Interaction Events Prediction
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为MRGCDDI的新方法,用于药物-药物相互作用事件预测,该方法结合了多关系图对比学习,无需数据增强 引入了一种无需数据增强的多关系图对比学习方法,避免了额外噪声,并通过简单的对比学习策略在编码器扰动中保持图数据语义,无需手动试错或昂贵领域知识来选择增强 NA 预测药物-药物相互作用事件,以减少潜在不良反应并提高治疗安全性 药物分子图和多关系药物-药物相互作用网络 机器学习 NA 图神经网络,对比学习 GNN 图数据(药物分子图和DDI网络) NA NA NA 准确率, Macro-F1, Macro-Recall, Macro-Precision NA
684 2026-02-07
A Semantic Conditional Diffusion Model for Enhanced Personal Privacy Preservation in Medical Images
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于语义条件扩散模型的医学图像生成框架,旨在通过合成与原始数据分布一致的图像来增强个人隐私保护 提出了医学语义扩散模型(MSDM),通过自适应批量归一化(AdaBN)将语义信息编码到高维潜在空间,并直接嵌入去噪神经网络中,从而在提升图像质量和语义准确性的同时确保合成图像与原始图像同分布;此外,引入了Spread算法来自动生成语义掩码,减少了对人工标注的依赖 未明确说明模型在处理极端或罕见病例图像时的泛化能力,以及合成图像在临床诊断中的实际可用性验证可能不足 开发一种能够合成医学图像以保护患者隐私的深度学习框架,同时保持图像质量和语义准确性 医学图像,特别是包含个人可识别信息(如面部特征、独特解剖结构、罕见病变或特定纹理模式)的图像 计算机视觉 NA 扩散模型 扩散模型 图像 使用了BraTS 2021、MSD Lung、DSB18和FIVES数据集,具体样本数量未明确说明 NA 医学语义扩散模型(MSDM),包含自适应批量归一化(AdaBN)和Spread算法 Dice分数 NA
685 2026-02-07
BSN With Explicit Noise-Aware Constraint for Self-Supervised Low-Dose CT Denoising
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为噪声感知盲点网络的新型自监督学习方法,用于高质量低剂量CT图像去噪 通过引入显式的噪声感知约束机制,在自监督学习过程中无需参考干净数据,并突破了现有方法对相邻噪声独立性假设的依赖 未明确说明方法在极端低剂量或特定病理条件下的性能表现 开发一种不依赖配对训练数据的自监督深度学习方法来处理低剂量CT图像中的空间相关噪声 低剂量CT图像 计算机视觉 NA 低剂量CT成像 CNN 图像 多种临床数据集(未指定具体数量) NA 盲点网络 NA NA
686 2026-02-07
ChemFixer: Correcting Invalid Molecules to Unlock Previously Unseen Chemical Space
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种名为ChemFixer的框架,旨在将深度学习分子生成模型产生的无效分子修正为有效分子,以扩展可用的化学空间 开发了基于Transformer架构的ChemFixer框架,通过预训练和微调大规模有效/无效分子对数据集,能够修正无效分子并保持其化学与生物学分布特性 未明确提及框架在极端复杂无效分子上的修正能力限制或计算效率的具体分析 解决深度学习分子生成模型产生无效分子的问题,扩展可用的化学空间并提升药物发现效率 深度学习生成的无效化学分子 机器学习 NA 深度学习分子生成 Transformer 分子结构数据 大规模有效/无效分子对数据集(具体数量未提供) 未明确提及 Transformer 分子有效性、化学与生物学分布特性保持度、药物-靶点相互作用预测性能 未明确提及
687 2026-02-07
Leveraging Large Language Models for Personalized Parkinson's Disease Treatment
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本研究提出了一种利用大语言模型(LLMs)设计个性化帕金森病治疗策略的新框架,整合患者自然语言信息和外部文本知识源 首次将大语言模型(LLMs)与蒙特卡洛树搜索(MCTS)、检索增强生成(RAG)和思维链(CoT)推理结合,用于帕金森病的个性化治疗策略设计,提高了可解释性和动态调整能力 方法依赖于自然语言形式的患者信息和外部文本知识源,可能受数据质量和完整性的限制;实验基于特定数据集(PPMI),泛化能力需进一步验证 开发一个个性化帕金森病治疗策略设计框架,以克服症状异质性和传统方法的局限性 帕金森病患者 自然语言处理 帕金森病 大语言模型(LLMs),蒙特卡洛树搜索(MCTS),检索增强生成(RAG),思维链(CoT)推理 大语言模型(LLMs) 文本(自然语言形式的患者信息和外部文本知识源) 使用帕金森病进展标记倡议(PPMI)数据集,具体样本数量未明确说明 NA NA 修订统一帕金森病评定量表第三部分(MDS-UPDRS-III)分数降低值 NA
688 2026-02-07
CINeMA: Conditional Implicit Neural Multi-Modal Atlas for a Spatio-Temporal Representation of the Perinatal Brain
2026-Feb, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出了一种名为CINeMA的新型框架,用于创建高分辨率、时空多模态的围产期大脑图谱,适用于数据稀缺的场景 在潜在空间中操作,避免了计算密集的图像配准,将图谱构建时间从数天缩短至数分钟,并支持基于解剖特征的灵活条件生成 未明确提及具体的数据稀缺程度或模型在极端数据不足情况下的性能边界 开发适用于低数据环境的围产期大脑高分辨率时空多模态图谱构建方法 胎儿和新生儿大脑的磁共振成像数据 医学图像分析 围产期脑发育异常(如胼胝体发育不全、脑室扩大) 磁共振成像 条件隐式神经表示模型 多模态医学图像 NA PyTorch(基于代码仓库推断) 条件隐式神经表示网络 准确性、效率、多功能性(文中提及超越现有方法,但未列具体指标) NA
689 2026-02-07
Ape Optimizer: A p-Power Adaptive Filter-Based Approach for Deep Learning Optimization
2026-Feb, IEEE transactions on neural networks and learning systems IF:10.2Q1
研究论文 本文提出了一种名为Ape的新型深度学习优化器,它基于自适应滤波中的最小均方p次幂算法,通过p次幂调整机制处理重尾梯度分布 首次将自适应滤波领域的LMP算法引入深度学习优化,提出针对α稳定分布梯度噪声的优化器设计,通过p次幂机制压缩大梯度并放大小梯度 未明确说明在超大规模模型或特定网络架构下的性能表现,实验范围主要限于基准数据集 开发一种能够有效处理非高斯分布梯度噪声的深度学习优化器 深度学习优化算法 机器学习 NA NA NA 基准数据集 NA NA NA 准确率, 训练速度 NA
690 2026-02-07
M-TabNet: A Transformer-Based Multi-Encoder for Early Neonatal Birth Weight Prediction Using Multimodal Data
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种基于Transformer的多编码器模型M-TabNet,用于利用多模态数据早期预测新生儿出生体重 提出了一种新颖的注意力机制Transformer模型,采用多编码器架构,有效整合了生理、生活方式、营养和遗传等多模态母体数据,解决了现有模型(如TabNet)的局限性,并实现了孕早期(<12周)的高精度预测 模型主要基于内部私有数据集进行开发和验证,虽然使用了IEEE儿童数据集进行独立验证以证明其泛化能力,但未在更广泛、更多样化的公共数据集上进行全面测试 开发一个准确、可解释且个性化的工具,用于早期预测新生儿出生体重,以识别高危妊娠并优化新生儿健康结局 孕妇及其新生儿 机器学习 新生儿疾病 多模态数据整合分析 Transformer 多模态数据(包括生理、生活方式、营养和遗传数据) 内部私有数据集和IEEE儿童数据集(具体样本数量未在摘要中提供) NA Transformer, 多编码器架构 平均绝对误差, R², 灵敏度, 特异性 NA
691 2026-02-07
EnsembleRegNet: Interpretable deep learning for transcriptional network inference from single-cell RNA-seq
2026-Feb, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种名为EnsembleRegNet的深度学习框架,用于从单细胞RNA测序数据中推断基因调控网络 通过集成编码器-解码器和多层感知机架构,结合Hodges-Lehmann估计器二值化、案例删除分析、RcisTarget基序富集和AUCell调控子活性评分,提高了网络推断的鲁棒性和生物学可解释性 未在摘要中明确提及 从高维单细胞RNA测序数据中准确推断基因调控网络结构 转录因子与靶基因关系、细胞类型特异性调控模块 机器学习 NA 单细胞RNA测序 集成编码器-解码器, 多层感知机 单细胞RNA测序数据 模拟和真实单细胞RNA测序数据集 NA EnsembleRegNet 聚类性能, 调控准确性 NA
692 2026-02-07
Robust Deep Learning for Pulse-Echo Speed of Sound Imaging via Time-Shift Maps
2026-Feb, IEEE transactions on medical imaging IF:8.9Q1
研究论文 本文提出了一种基于深度学习的鲁棒方法,用于通过时间偏移映射进行脉冲回波声速成像 开发了一种不依赖于特定前向模型的深度学习框架,通过时间偏移映射非线性映射到声速分布,并采用两阶段训练策略增强模型鲁棒性和泛化能力 未在临床人体数据上进行验证,计算成本较高(特别是全波仿真阶段) 提高脉冲回波模式下声速成像的准确性和鲁棒性,以改善超声图像质量和诊断价值 超声声速分布成像 医学影像处理 NA 脉冲回波超声成像,深度学习 深度学习模型 超声数据,时间偏移映射 NA NA NA 结构相似性指数,重建精度,对比度噪声比 NA
693 2026-02-07
Deep learning in stroke therapeutics: drug repurposing and beyond
2026-Feb, Expert opinion on drug discovery IF:6.0Q1
综述 本文综述了深度学习在卒中治疗研究中的应用,特别是在药物再利用方面的作用 强调了深度学习在加速卒中药物再利用和开发中的新兴应用,并指出了其在连接转化研究鸿沟方面的潜力 模型可解释性、泛化能力和真实世界验证方面仍存在挑战 探讨深度学习在卒中治疗研究中的应用,特别是药物发现和再利用 卒中治疗研究,包括临床前模型和临床决策支持 机器学习 卒中 NA NA 高维数据 NA NA NA NA NA
694 2026-02-07
The expectations of in silico fragment-based drug design and future challenges
2026-Feb, Expert opinion on drug discovery IF:6.0Q1
综述 本文讨论了基于片段的药物发现(FBDD)中计算机模拟方法的最新进展,特别是人工智能和机器学习如何加速药物发现过程 强调人工智能和机器学习在FBDD中的应用,包括生成模型、强化学习以及口袋感知设计,以加速化合物设计、预测相互作用并增强化学多样性 尽管AI加速了发现过程,但实验验证仍然是关键,且未详细讨论具体模型的局限性 探讨计算机模拟片段药物设计方法的期望和未来挑战,以加速药物发现过程 基于片段的药物发现(FBDD)方法,特别是针对激酶和GPCRs等靶点 机器学习 NA 生成模型、强化学习、变分自编码器(VAEs) 生成模型、强化学习模型、深度学习模型 化学化合物数据、蛋白质-片段相互作用数据 NA NA NA NA NA
695 2026-02-07
A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG signals
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种混合深度学习方法来检测脑电图信号中的癫痫发作 结合K-means SMOTE平衡数据,并集成1D CNN与基于TBPTT的BiLSTM网络,以高效提取时空序列信息并降低计算复杂度 未明确说明方法在实时应用或不同数据集上的泛化能力 开发一种高效准确的自动化癫痫发作检测方法 脑电图信号 机器学习 癫痫 脑电图 CNN, LSTM 信号 使用公开的UCI癫痫发作识别数据集,未明确具体样本数量 NA 1D CNN, BiLSTM 精确度, 灵敏度, 特异性, F1分数 NA
696 2026-02-07
PAINT: Prior-Aided Alternate Iterative NeTwork for Ultra-Low-Dose CT Imaging Using Diffusion Model-Restored Sinogram
2026-Feb, IEEE transactions on medical imaging IF:8.9Q1
研究论文 提出一种结合扩散模型与深度学习展开式迭代重建的两阶段框架,用于从极低剂量采样的正弦图中恢复高质量CT图像 提出了一种名为PAINT的两阶段框架,首次将条件扩散模型用于正弦图恢复,并结合展开式迭代重建,通过交替更新欠采样与恢复数据的保真度项来充分利用先验信息 未明确说明计算成本与推理时间,临床数据实验的样本规模未具体说明 实现超低剂量CT成像,以减少重复扫描对患者的辐射风险 CT扫描的正弦图与重建图像 医学影像重建 肺癌 区域少视角扫描 扩散模型, 深度学习展开式迭代网络 正弦图, CT图像 模拟数据实验(112 mm视野),临床数据实验(具体数量未说明) NA 条件扩散模型, Prior-aided Alternate Iterative NeTwork (PAINT) CT值准确性, 图像细节保留, 伪影减少, 结构恢复 NA
697 2026-02-07
Secure Tracking of Patient's Vital Signs Using CSI-Based Homomorphic Encryption-Enabled Deep Learning Framework
2026-Feb, IEEE journal of biomedical and health informatics IF:6.7Q1
研究论文 本文提出了一种结合信道状态信息、同态加密和轻量级深度学习的患者生命体征安全实时监测框架VitalCrypt 首次将同态加密与轻量级深度学习结合用于CSI信号处理,实现加密数据上的直接计算,在保证高精度的同时确保数据全流程机密性 加密数据处理延迟约为明文数据的7倍,存在性能与隐私保护的权衡 开发保护患者隐私的数字医疗系统,实现安全、实时的非侵入式生命体征监测 患者的呼吸率和心率信号 机器学习 NA 信道状态信息(CSI)采集、同态加密 轻量级神经网络 无线信号数据(CSI) 公开数据集(具体数量未说明) NA 轻量级神经网络(具体架构未说明) 准确率 NA
698 2026-02-06
Development and application of an instrument for microstructure matrix inclusion distribution analysis in oversized metallic materials
2026-Feb-20, iScience IF:4.6Q1
研究论文 本研究开发了一种用于超大金属材料中微观结构基体夹杂物分布分析的自动化检测系统 集成高精度CNC平台、多单元显微成像、激光光谱和基于YOLOv11的深度学习模型,实现了米级样品的全区域快速扫描,检测效率比传统方法提高20倍以上 未明确说明系统对不同金属材料类型的适用性限制 解决洁净钢生产中夹杂物分析的迫切需求,开发自动化检测系统 超大金属材料(汽车板材样品)中的微观结构夹杂物 计算机视觉 NA CNC平台控制、显微成像、激光光谱分析、深度学习 CNN 图像 汽车板材样品(具体数量未明确),共分析533,041个夹杂物 NA YOLOv11 检测效率(与传统方法对比) NA
699 2026-02-06
AI-driven routing and layered architectures for intelligent ICT in nanosensor networked systems
2026-Feb-20, iScience IF:4.6Q1
综述 本文综述了纳米传感器网络与现代信息通信技术(ICT)的融合,探讨了机器学习与人工智能在提升数据处理、能源管理、实时通信和系统协调方面的应用 提出了一个统一的框架,用于推进智能且资源高效的纳米传感器通信系统,并探索了受生物系统启发、可解释模型和基于量子学习等潜在解决方案 识别了涉及计算负载、数据隐私和系统互操作性等关键挑战 评估人工智能与机器学习技术如何改善纳米传感器网络环境中的数据路由、异常检测、安全性和预测性维护 纳米传感器网络系统 机器学习 NA NA 监督学习, 无监督学习, 强化学习, 深度学习 传感器数据 NA NA NA 延迟, 吞吐量, 能源效率 NA
700 2026-02-06
Diverse intracellular trafficking of insulin analogs by machine learning-based colocalization and diffusion analysis
2026-Feb-20, iScience IF:4.6Q1
研究论文 本研究开发了一种结合机器学习共定位指纹识别与深度学习辅助单粒子扩散分析(DeepSPT)的平台,用于实时比较胰岛素类似物在活细胞内的运输差异 首次将时间分辨共定位的机器学习框架与深度学习辅助单粒子扩散分析相结合,实现了对胰岛素类似物细胞内运输动态的精细解析 研究仅在活细胞模型中进行,未涉及完整的生理环境或动物模型验证 探究胰岛素类似物与内源性胰岛素在细胞内运输途径的差异 ATTO标记的重组人胰岛素(HI)和速效胰岛素类似物门冬胰岛素(IAsp) 机器学习 糖尿病 活细胞成像,单粒子追踪,共定位分析 机器学习,深度学习 活细胞成像视频,单粒子轨迹数据 未明确说明 未明确说明 未明确说明 未明确说明 未明确说明
回到顶部