本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!
如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!


除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。
| 序号 | 推送日期 | 文章 | 类型 | 简述 | 创新点 | 不足 | 研究目的 | 研究对象 | 领域 | 病种 | 技术 | 模型 | 数据类型 | 样本量 | 算法框架 | 模型架构 | 性能指标 | 计算资源 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1041 | 2025-12-08 |
Transformer-based multi-scale feature fusion for real-time CT bone metastasis detection
2026-Feb, Bone
IF:3.5Q2
DOI:10.1016/j.bone.2025.117729
PMID:41241185
|
研究论文 | 本文提出了一种基于Transformer的实时CT骨转移检测模型BM-DETR,通过多尺度特征融合提升小尺寸、低对比度病变的检测精度 | 提出了集成空间上下文增强模块(SCEM)、双分支上采样的AttentionUpsample以及扩张Transformer注意力块(DTAB)的新型Transformer架构,有效解决了局部细节捕获与计算效率的平衡问题 | 未明确说明模型在更广泛临床数据上的泛化能力,以及在实际边缘设备部署中的具体性能表现 | 开发高精度、实时的CT骨转移自动检测系统,以支持早期筛查和智能诊断 | CT影像中的骨转移病变 | 计算机视觉 | 骨转移癌 | CT影像分析 | Transformer | 医学影像(CT) | OsteoScan和BMSeg两个公开数据集 | 未明确说明 | BM-DETR(自定义Transformer架构,包含SCEM、AttentionUpsample、DTAB模块) | mAP50 | 未明确说明,但提及支持边缘部署 |
| 1042 | 2025-12-08 |
Deep learning-based perfusion quantification and large vessel exclusion for renal multi-TI arterial spin labelling MRI
2026-Feb, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110573
PMID:41260277
|
研究论文 | 提出了一种基于BiLSTM的深度学习方法,用于肾脏多反转时间动脉自旋标记MRI的灌注量化、大血管排除以及血流到达时间和血流长度估计 | 首次将BiLSTM深度学习模型应用于多反转时间ASL数据的灌注参数量化,并实现了自动大血管排除,相比传统基于Buxton模型拟合的方法,在噪声环境下更准确、更鲁棒 | 模拟数据与体内数据的特性存在差异,导致部分观察到的量化差异无法完全由模拟结果解释;深度学习模型在血流长度估计上误差大于传统方法 | 改进肾脏多反转时间动脉自旋标记MRI的灌注参数量化方法,提高其准确性和鲁棒性 | 肾脏灌注参数(灌注量、血流到达时间、血流长度)及大血管区域 | 医学影像分析 | 肾脏疾病 | 多反转时间流动敏感交替反转恢复序列动脉自旋标记MRI | BiLSTM | MRI图像序列 | 模拟像素级多反转时间信号数据及体内数据 | NA | BiLSTM | 量化误差 | NA |
| 1043 | 2025-12-08 |
GL-mamba-net: A magnetic resonance imaging restoration network with global-local mamba
2026-Feb, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110574
PMID:41271086
|
研究论文 | 本文提出了一种名为GL-mamba-net的双路径Mamba网络,用于加速磁共振成像的采集过程,通过融合全局与局部特征来提升图像恢复的质量和效率 | 提出了多尺度局部Mamba块以捕获不同区域的局部信息;设计了新的特征融合块以增强全局与局部信息的融合;构建了双路径Mamba网络架构,提升了复杂动态数据环境下的特征提取能力和适应性 | 未明确说明模型在特定病理条件下的泛化能力,以及在实际临床部署中的计算效率限制 | 加速磁共振成像采集过程,提升欠采样图像恢复的质量 | 欠采样的单线圈图像域数据 | 计算机视觉 | NA | 磁共振成像 | Mamba | 图像 | NA | NA | 双路径Mamba网络 | 多种评估指标 | NA |
| 1044 | 2025-12-08 |
Enhancing and accelerating brain MRI through deep learning reconstruction using prior subject-specific imaging
2026-Feb, Magnetic resonance imaging
IF:2.1Q2
DOI:10.1016/j.mri.2025.110558
PMID:41274586
|
研究论文 | 本文提出了一种基于深度学习的MRI重建框架,通过整合先验个体特异性成像信息来增强和加速脑部MRI扫描 | 提出了一种结合初始重建网络、深度配准模型和基于Transformer的增强网络的新型深度学习MRI重建框架,显著减少了总重建时间,并提高了下游脑部分割任务的准确性 | 研究仅基于T1加权MRI扫描的纵向数据集,样本量相对较小(18名受试者),且未在其他MRI序列或更大规模数据集中验证 | 旨在通过深度学习重建方法减少MRI采集时间,提高图像质量,并加速临床实时应用 | 脑部T1加权MRI扫描图像 | 计算机视觉 | NA | MRI | CNN, Transformer | 图像 | 2808张图像来自18名受试者 | PyTorch | Transformer | 准确性, 体积一致性 | NA |
| 1045 | 2025-12-06 |
Deep learning enhanced quantitative debonding evaluation in tile panels using Lamb waves
2026-Feb, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107821
PMID:40945330
|
研究论文 | 本研究提出了一种利用Lamb波信号和数据驱动的深度学习方法定量评估外部陶瓷砖面板脱粘的新方法 | 结合Lamb波信号的时间-频率表示与二维卷积神经网络,通过混合数据集(模拟与实验数据)训练,生成全面的二维损伤指数图以识别脱粘缺陷的位置和大小 | NA | 开发一种可靠的定量评估陶瓷砖面板脱粘的非破坏性评估方法 | 外部陶瓷砖面板的脱粘缺陷 | 计算机视觉 | NA | 连续小波变换 | CNN | 图像 | NA | NA | 二维卷积神经网络 | NA | NA |
| 1046 | 2025-12-06 |
Modified UNet-enhanced ultrasonic superb microvascular imaging feature extraction and grading of carpal tunnel syndrome
2026-Feb, Ultrasonics
IF:3.8Q1
DOI:10.1016/j.ultras.2025.107834
PMID:41039691
|
研究论文 | 本研究结合超快超微血管成像与改进的UNet分割模型,通过定量图像分析客观提取微血管特征,用于腕管综合征的分级 | 采用分类引导的改进UNet分割模态,结合非线性二次回归模型,实现了对腕管综合征微血管特征的自动提取和分级,提高了分类准确性和AUC值 | 样本量相对较小(105名患者),且未提及模型在其他人群或设备上的泛化能力验证 | 开发一种基于超声超微血管成像和深度学习的非侵入性方法,用于腕管综合征的客观分级 | 腕管综合征患者(包括轻度、中度和重度)及健康对照者的腕部超微血管成像数据 | 计算机视觉 | 腕管综合征 | 超快超微血管成像 | CNN | 图像 | 105名患者(21名轻度、71名中度、13名重度)和21名健康对照者 | NA | 改进的UNet | 分类准确率, AUC, Kappa系数 | NA |
| 1047 | 2025-12-06 |
Firearm brand classification using deep learning on cartridge case images
2026-Feb, Forensic science international
IF:2.2Q1
DOI:10.1016/j.forsciint.2025.112671
PMID:41061388
|
研究论文 | 本研究提出了一种基于深度学习的枪械品牌分类方法,利用弹壳图像的归一化高度图和形状指数变换,以提高法医弹道学中的枪械识别准确性和效率 | 首次将深度学习方法应用于弹壳图像的枪械品牌分类,通过归一化高度图和形状指数变换提取特征,并利用过采样技术处理类别不平衡问题 | 研究主要基于土耳其的枪械品牌数据,可能在其他地区的适用性有限;且未详细讨论模型在真实犯罪场景中的泛化能力 | 开发一种自动化枪械品牌分类系统,以优化法医弹道学中的弹壳比较流程,减少检查时间并提高调查效率 | 弹壳图像,涵盖土耳其犯罪案件中常见的21种最流行枪械品牌,包括手工枪械和改装空包手枪 | 计算机视觉 | NA | 归一化高度图,形状指数变换,图像处理 | CNN, Transformer | 图像 | 超过35万弹壳样本,通过旋转过采样扩展至超过100万样本 | NA | ResNet, Vision Transformer | 准确率 | NA |
| 1048 | 2025-12-06 |
Deep learning enhanced label-free cervical screening via stimulated Raman cytology
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128982
PMID:41109050
|
研究论文 | 本文提出了一种基于刺激拉曼细胞学的无标记宫颈筛查平台,结合深度学习实现宫颈细胞的快速筛查和诊断 | 开发了VAD-SRC平台,通过刺激拉曼散射显微镜获取细胞内在生物分子对比,结合深度卷积神经网络实现高精度诊断和细胞类型自动分割 | 未提及研究的具体局限性 | 提高宫颈癌筛查的诊断通量和灵敏度 | 宫颈细胞样本 | 数字病理学 | 宫颈癌 | 刺激拉曼散射显微镜 | CNN | 图像 | 未提及具体样本数量 | NA | 深度卷积神经网络 | 准确率, 灵敏度 | NA |
| 1049 | 2025-12-06 |
SE-PDS enhanced NIR spectral transfer learning: A machine learning approach for cross-instrument jet fuel property quantification
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.129005
PMID:41124770
|
研究论文 | 本研究提出了一种改进的共享嵌入增强分段直接标准化算法,结合随机森林模型,实现了跨仪器对喷气燃料16种理化性质的定量预测 | 提出了改进的SE-PDS算法,整合了所有光谱段的光谱矩阵和窗口索引,使单个模型能够利用不同特征间的共享信息,并自动识别和消除光谱数据中的不规则波动和突变 | 研究仅使用了86个喷气燃料样本进行验证,样本量相对较小 | 实现跨仪器近红外光谱的迁移学习,用于喷气燃料性质的定量预测 | 喷气燃料的理化性质 | 机器学习 | NA | 近红外光谱 | 随机森林 | 光谱数据 | 86个喷气燃料样本 | NA | 随机森林 | 相关系数, 决定系数, 相对误差率 | NA |
| 1050 | 2025-12-05 |
Laser spectral enhancement and analysis based on blind-spot networks and Kolmogorov-Arnold networks
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128806
PMID:40934630
|
研究论文 | 本文提出了一种结合盲点网络和Kolmogorov-Arnold网络的自监督深度学习框架,用于增强激光诱导击穿光谱的分析性能 | 提出了一种无需干净参考数据的自监督光谱去噪网络(BSSDN),并首次将Kolmogorov-Arnold网络(KANs)架构应用于LIBS定量分析,通过自适应样条基函数和局部加权改进了传统多层感知机的局限性 | 研究仅在六种认证不锈钢参考材料上进行了验证,样本类型和数量有限,未在其他材料或更复杂基体中进行广泛测试 | 解决激光诱导击穿光谱技术中光谱噪声干扰和定量分析精度有限的问题,提升LIBS的分析性能 | 激光诱导击穿光谱数据,特别是来自六种认证不锈钢参考材料(JZG201-JZG206B)的光谱 | 机器学习 | NA | 激光诱导击穿光谱 | 盲点网络, Kolmogorov-Arnold网络 | 光谱数据 | 六种认证不锈钢参考材料(36 × 36 mm固体块) | NA | 盲点光谱去噪网络, Kolmogorov-Arnold网络 | 平均光谱相对标准偏差, 特征峰保留率, 强度保真度, 决定系数, 预测均方根误差 | NA |
| 1051 | 2025-12-05 |
ResFusionNet-TSMT: A residual network for pesticide detection using surface-enhanced Raman spectroscopy
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128852
PMID:40972279
|
研究论文 | 本文提出了一种名为ResFusionNet-TSMT的新型深度学习框架,用于基于表面增强拉曼光谱同时进行农药分类和浓度定量检测 | 该模型创新性地将残差网络的局部特征提取能力与Transformer的全局依赖建模相结合,采用双流架构处理原始和多尺度光谱输入,引入注意力池化机制聚焦判别性峰值,并利用Transformer编码器进行鲁棒特征融合,同时通过新颖的类别注意力机制优化分类与回归任务的联合学习 | NA | 提高农药检测的准确性,解决光谱干扰和信号变异性问题 | 农药 | 机器学习 | NA | 表面增强拉曼散射 | CNN, Transformer | 光谱 | NA | NA | ResNet, Transformer | 准确率, F1分数, 平均绝对误差, 相关系数R | NA |
| 1052 | 2025-12-05 |
Metabolic profiling of Yangxinshi tablet based on time-staggered ion list dynamic detection integrated with metabolic molecular network
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128910
PMID:41016099
|
研究论文 | 本文开发了一种基于时间交错离子列表动态检测与代谢分子网络整合的综合分析策略,用于系统表征大鼠口服养心氏片后的体内代谢谱 | 创新性地建立了BS-VPMDF-tsPIL-AE数据采集模式,结合代谢分子网络和深度学习辅助的质量缺陷过滤智能分类,有效提升了低丰度药物衍生成分的检测能力 | 研究仅在大鼠血浆和尿液中进行,未涉及其他组织或物种,且部分原型成分仅通过标准品对比初步鉴定,需进一步验证 | 系统表征养心氏片在大鼠体内的代谢产物,以推进中药药效物质基础研究 | 大鼠口服养心氏片后的血浆和尿液样本 | 代谢组学 | NA | 质谱分析,代谢分子网络,深度学习辅助质量缺陷过滤 | 深度学习 | 质谱数据 | 大鼠血浆和尿液样本,具体数量未明确说明 | R编程,Python | NA | NA | NA |
| 1053 | 2025-12-05 |
Study on discrimination of Glycyrrhizae Radix et Rhizoma (Licorice) varieties and origin traceability based on composite feature reconstruction combined with HLOA-CNN algorithm
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128821
PMID:40946482
|
研究论文 | 本研究提出了一种基于复合特征重构与HLOA-CNN算法的甘草品种鉴别与产地溯源方法 | 整合多源表型和化学特征,并采用角蜥蜴优化算法(HLOA)优化CNN超参数,构建了HLOA-CNN分类模型,实现了对甘草品种和产地的精确识别 | 未明确提及模型在其他数据集或实际应用场景中的泛化能力测试 | 开发一种准确鉴别甘草品种和追溯其产地的智能方法,以保障功能性食品的真实性 | 甘草(Glycyrrhizae Radix et Rhizoma)样本 | 机器学习 | NA | 多源特征提取(RGB颜色、可见光谱、Tamura纹理)、化学成分测量、主成分分析(PCA)、偏最小二乘判别分析(PLS-DA) | CNN | 多源特征数据(表型特征、化学特征) | 未明确说明具体样本数量,但提及收集了甘草样本并构建了多源特征数据集 | NA | CNN(具体架构未指定,但由HLOA优化超参数) | 准确率 | NA |
| 1054 | 2025-12-05 |
Deep-learning-driven spectral image analysis for intelligent monitoring of multiple pesticides and antibiotics
2026-Feb-01, Talanta
IF:5.6Q1
DOI:10.1016/j.talanta.2025.128942
PMID:41052491
|
研究论文 | 本研究提出了一种基于深度学习的谱图像分析方法,用于智能监测农业水体中的多种农药和抗生素 | 采用微调的ResNet-50深度学习模型,通过建立光谱特征与参考浓度之间的映射,实现了对未知污染物浓度的有效预测,为农药和抗生素的快速识别提供了新视角 | 在3.8-10 μg/L浓度范围内,自然水样的异常预测频率有所增加,尽管整体准确率仍相对较高 | 开发一种快速、同时检测多种农药和抗生素的智能监测方法,以应对环境污染物带来的健康风险 | 农业水体中的农药(草甘膦、苯达松)和抗生素(苄青霉素钾、盐酸四环素) | 计算机视觉 | NA | 光谱分析 | CNN | 光谱图像 | 6100个样本,包含草甘膦、苯达松、苄青霉素钾和盐酸四环素,浓度范围为3.8-550 μg/L | NA | ResNet-50 | 决定系数, 可靠预测率, 检测限 | NA |
| 1055 | 2025-12-05 |
Swin-EffuseNet: A dual-stream attention-based model combining Swin transformer V2 and EfficientNet-BO for bone fracture classification
2026-Feb, Journal of orthopaedics
IF:1.5Q3
DOI:10.1016/j.jor.2025.10.016
PMID:41340716
|
研究论文 | 提出了一种名为Swin-EffuseNet的双流深度学习模型,用于X射线图像中的骨折分类 | 通过注意力机制融合Swin Transformer V2和EfficientNet-B0,结合全局语义特征与细粒度局部纹理,提升骨折分类性能 | 未明确提及模型在更广泛数据集或临床环境中的泛化能力限制 | 开发一个准确、高效且可解释的智能骨折分类模型,以支持诊断工作流程 | X射线图像中的骨折分类,包括无骨折、发丝状骨折、简单骨折和复杂骨折四类 | 计算机视觉 | 骨折 | 深度学习 | Transformer, CNN | 图像 | 4370张X射线图像,来自两个公开数据集 | NA | Swin Transformer V2, EfficientNet-B0 | 准确率, 精确率, 召回率, F1分数, ROC-AUC, 对数损失 | NA |
| 1056 | 2025-12-03 |
Making AI accessible for forensic DNA profile analysis
2026-Feb, Forensic science international. Genetics
DOI:10.1016/j.fsigen.2025.103345
PMID:40848662
|
研究论文 | 本研究探索使用案例工作中收集的数据和广泛采用的U-Net架构训练高性能模型,用于法医DNA分析中的等位基因自动识别 | 首次利用案例工作数据而非手动标注数据训练U-Net模型进行等位基因识别,实现了与人类分析师相当的性能,并公开了代码、模型权重和研究数据以促进社区发展 | 未明确说明数据、标注或模型架构中哪些方面对性能起关键作用,未来工作需进一步探索这些因素 | 开发一种易于访问且高性能的深度学习模型,用于自动化法医DNA分析中的等位基因识别 | 法医DNA分析中的电泳图(EPG)数据,包括案例数据和独立混合研究数据 | 计算机视觉 | NA | DNA分析,电泳图(EPG)技术 | CNN | 图像(电泳图扫描点) | 未明确指定具体样本数量,但包括案例数据和独立混合研究数据 | 未明确指定,但可能基于PyTorch或TensorFlow(因U-Net常用) | U-Net | F1分数 | NA |
| 1057 | 2025-12-01 |
Deep learning-based quantitative assessment of renal chronicity indices in lupus nephritis
2026-Feb, Annals of diagnostic pathology
IF:1.5Q3
|
研究论文 | 开发基于深度学习的自动化评估狼疮性肾炎肾脏慢性指数的流程 | 首个从疾病特异性角度自动化评估肾脏慢性指数的深度学习流程,显著提高观察者间一致性并增强预后预测能力 | 两个队列存在轻微人口统计学差异,特别是年龄和血红蛋白水平 | 开发自动化评估狼疮性肾炎肾脏慢性指数的有效深度学习流程 | 狼疮性肾炎患者 | 数字病理学 | 狼疮性肾炎 | 深度学习 | CNN | 病理切片图像 | 141名患者的282张切片(训练队列30名患者60张切片,内部测试148张切片,外部测试74张切片) | NA | NA | 分割性能,与病理学家相关性,观察者间一致性,预后准确性 | NA |
| 1058 | 2025-11-26 |
A deep learning approach to predicting hospitalized patients' SEIRD states using multimodal spatiotemporal data
2026-Feb, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.106157
PMID:41161262
|
研究论文 | 本研究开发了多模态深度学习模型,利用医院时空数据预测住院患者的SEIRD状态和医院获得性感染风险 | 提出了一种新颖的混合架构,先让专门组件独立学习时空数据的表示,然后通过联合微调阶段智能融合这些预训练表示 | 研究使用合成医院模拟数据集,未来需要在真实临床数据上进行验证 | 开发个体层面的医院获得性感染风险预测模型,为针对性干预提供支持 | 住院患者 | 机器学习 | 医院获得性感染 | 深度学习 | LSTM, DCRNN, 图卷积网络 | 多模态时空数据 | 基于同行评审的合成医院模拟数据集,采用分层10折交叉验证 | NA | 异构图卷积长短期记忆网络, 扩散卷积循环神经网络, 混合模型 | 准确率, F1分数 | NA |
| 1059 | 2025-11-26 |
A multi-task deep learning framework for intraoperative diagnosis of thyroid cancer metastasis using whole slide images
2026-Feb, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.106176
PMID:41237514
|
研究论文 | 开发基于CLAM的多任务深度学习框架,用于甲状腺癌术中冰冻切片全玻片图像的转移诊断 | 首次将聚类约束注意力多实例学习应用于甲状腺癌术中诊断,实现淋巴结转移检测、T分期分类和解剖定位三项临床任务 | T分期分类性能相对较低,样本量有限,需要进一步外部验证 | 提升甲状腺癌术中淋巴结转移诊断的准确性和可解释性 | 甲状腺乳头状癌患者的术中冰冻切片全玻片图像 | 数字病理 | 甲状腺癌 | 全玻片图像分析 | CNN, 多实例学习 | 病理图像 | 来自两个独立中心的569例患者样本 | PyTorch | ResNet50, CLAM | AUC | NA |
| 1060 | 2025-11-26 |
Enhancing the prediction accuracy of pathological downstaging in locally advanced rectal cancer using deep learning models with preoperative MRI and clinicopathological data
2026-Feb, International journal of medical informatics
IF:3.7Q2
DOI:10.1016/j.ijmedinf.2025.106142
PMID:41100929
|
研究论文 | 本研究开发并验证了基于术前T2加权MRI影像联合放射学和临床病理数据的深度学习模型,用于预测局部晚期直肠癌新辅助放化疗后的病理T分期降期 | 首次将T2加权MRI影像与放射学特征和临床病理数据相结合构建深度学习模型,显著提高了病理降期预测准确率 | 回顾性研究设计,样本量相对有限(总样本406例),需要进一步前瞻性验证 | 提高局部晚期直肠癌新辅助放化疗后病理T分期降期的预测准确性 | 局部晚期直肠癌患者 | 数字病理 | 直肠癌 | 磁共振成像,深度学习 | 深度学习模型 | 医学影像,临床数据 | 总样本406例(训练集223例,内部测试集95例,外部测试集88例) | NA | NA | AUC,ROC曲线分析 | NA |