深度学习在生物医药领域中的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新,已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价10元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 26128 篇文献,本页显示第 1 - 20 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量
1 2025-06-07
im7G-DCT: A two-branch strategy model based on improved DenseNet and transformer for m7G site prediction
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 本文提出了一种基于改进的DenseNet和Transformer的两分支策略模型im7G-DCT,用于预测m7G位点 采用两分支策略并行提取局部和全局特征,深入挖掘m7G位点序列的潜在特征信息,提高了预测准确率 NA 准确识别mRNA中的m7G位点,为临床应用和治疗策略开发提供支持 mRNA中的N-7甲基鸟苷(m7G)位点 生物信息学 癌症、神经退行性疾病、病毒感染 深度学习 改进的DenseNet和Transformer RNA序列数据 NA
2 2025-06-07
Convolutional Neural Network approach to classify mitochondrial morphologies
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 介绍了一种基于深度学习的软件MitoClass,用于自动分类线粒体网络的形态 利用CNN架构开发了MitoClass软件,能够快速、准确地对线粒体形态进行分类 NA 开发一种高效的方法,定量评估细胞群体中线粒体形状的变化 线粒体网络的形态 计算机视觉 NA 超分辨率成像 CNN 图像 NA
3 2025-06-07
iEnhancer-DS: Attention-based improved densenet for identifying enhancers and their strength
2025-Oct, Computational biology and chemistry IF:2.6Q2
研究论文 提出了一种基于深度学习的多任务框架iEnhancer-DS,用于增强子识别及其强度分类 结合改进的DenseNet模块和自注意力机制,动态评估特征重要性并分配权重,提高了增强子识别和强度预测的性能 未提及具体的数据集规模或多样性限制 开发计算方法来快速准确地识别增强子及其强度 DNA序列中的增强子及其强度 生物信息学 NA one-hot编码和核苷酸化学性质(NCP) 改进的DenseNet和自注意力机制 DNA序列数据 NA
4 2025-06-07
Advanced data-driven interpretable analysis for predicting resistant starch content in rice using NIR spectroscopy
2025-Sep-15, Food chemistry IF:8.5Q1
研究论文 本研究提出了一种结合近红外光谱(NIR)和卷积神经网络(CNN)的创新数据驱动框架,用于快速、经济高效地预测大米中的抗性淀粉(RS)含量 创新性地将CNN与数据增强技术结合,并利用SHAP方法解释模型,显著提高了预测精度并缩小了关键波长范围 深度学习模型的'黑箱'特性虽然通过SHAP得到部分解释,但可能仍存在其他未被发现的局限性 开发一种快速、经济高效的大米抗性淀粉含量预测方法 大米中的抗性淀粉(RS) 机器学习 NA 近红外光谱(NIR) CNN 光谱数据 NA
5 2025-06-07
Intelligent transformation of ultrasound-assisted novel solvent extraction plant active ingredients: Tools for machine learning and deep learning
2025-Sep-15, Food chemistry IF:8.5Q1
综述 本文综述了机器学习和深度学习模型在超声波辅助新型溶剂提取植物活性成分中的应用进展 利用机器学习和深度学习模型解决超声波辅助提取中的挑战,包括加速新型溶剂筛选、促进活性成分发现、优化复杂提取过程、深入分析提取机制以及实时监控超声波设备 模型可解释性、数据集标准化和工业可扩展性等挑战 推动超声波辅助提取技术的智能化转型 植物活性成分 机器学习 NA 超声波辅助提取(UAE) 机器学习和深度学习模型 NA NA
6 2025-06-07
Smartphone-integrated Nanozyme approaches for rapid and on-site detection: Empowering smart food safety
2025-Sep-15, Food chemistry IF:8.5Q1
review 本文综述了智能手机集成的纳米酶技术在食品安全快速现场检测中的应用及其进展 探讨了智能手机与纳米酶技术结合用于实时生物传感的创新点,以及与AI、ML、DL和3D打印技术结合的潜力 讨论了提高灵敏度、实现多重检测和现场应用验证等关键挑战 旨在推动智能食品安全系统的发展,实现实时现场检测以确保食品质量和公共健康 食源性病原体、污染物、食品添加剂、营养素及有害残留物(如农药和兽药) 食品安全 NA 纳米酶技术、AI、ML、DL、3D打印 NA 实时生物传感数据 NA
7 2025-06-07
Digital image-based chemometrics for food analysis: a practical tutorial and roadmap
2025-Sep-15, Food chemistry IF:8.5Q1
综述 本文综述了数字图像在食品分析中的应用,提供了从单变量方法到多变量分类/校准方法的路线图,并通过三个案例研究展示了其在食品安全和质量方面的潜力 介绍了混合颜色描述符、色度图、深度学习架构和时间分辨RGB成像等最新进展,提高了这些技术在食品科学中的稳健性和适用性 该领域面临关键挑战,特别是缺乏方法学标准化,文献中多样化的应用证明了这一点 开发食品质量控制中的分析方法 食品 化学计量学 NA 数字图像处理 深度学习架构 图像 NA
8 2025-06-07
EffiCOVID-net: A highly efficient convolutional neural network for COVID-19 diagnosis using chest X-ray imaging
2025-Aug, Methods (San Diego, Calif.)
research paper 提出了一种名为EffiCOVID-Net的高效卷积神经网络,用于通过胸部X光影像诊断COVID-19 EffiCOVID-Net结合了多样化的特征学习单元,采用包含(3×3)滤波器和循环连接的EffiCOVID块,以提取复杂特征同时保持空间完整性 该模型最适合作为辅助工具而非独立的诊断方法 开发一种高效且准确的深度学习模型,用于COVID-19的早期诊断 COVID-19患者的胸部X光影像 computer vision COVID-19 deep learning CNN image 两个公开可用的COVID-19胸部X光数据集
9 2025-06-07
Computational models for prediction of m6A sites using deep learning
2025-Aug, Methods (San Diego, Calif.)
研究论文 本文综述了基于机器学习和深度学习的m6A位点预测方法,并在基准数据集上验证了多种深度学习方法的有效性 验证了多种深度学习方法在m6A位点预测中的应用,包括专门为生物序列设计的预训练模型和其他基础深度学习方法 未提及具体的数据集规模或实验细节,可能影响结果的普适性 准确识别m6A修饰位点,以理解其功能和潜在机制 真核生物mRNA中的N6-甲基腺苷(m6A)修饰位点 机器学习 NA 深度学习 预训练模型和其他基础深度学习方法 生物序列数据 NA
10 2025-06-07
Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising
2025-Jul-01, Investigative radiology IF:7.0Q1
研究论文 本文提出了一种结合运动补偿扩散编码梯度(MCGs)和深度学习去噪的多重扩散加权成像(msDWI)方法,用于改善胰腺DWI的图像质量和定量准确性 创新点在于结合了CODE生成的MCGs和深度学习去噪技术,以减少运动伪影并最小化回波时间损失 样本量较小(22例患者),且研究仅在一家机构进行 提高胰腺扩散加权成像(DWI)的图像质量和定量准确性 胰腺 医学影像 胰腺疾病 多重扩散加权成像(msDWI)、运动补偿扩散编码梯度(MCGs)、深度学习去噪 深度学习 MRI图像 22例患者
11 2025-06-07
Intraindividual Comparison of Image Quality Between Low-Dose and Ultra-Low-Dose Abdominal CT With Deep Learning Reconstruction and Standard-Dose Abdominal CT Using Dual-Split Scan
2025-Jul-01, Investigative radiology IF:7.0Q1
研究论文 本研究通过双源CT扫描,比较了低剂量和超低剂量腹部CT与深度学习重建(DLR)和标准剂量CT与模型迭代重建(MBIR)在肝脏病灶显影质量上的差异 首次在个体内比较了低剂量和超低剂量CT与DLR在肝脏病灶显影上的非劣效性,采用了双源CT扫描技术 尽管低剂量和超低剂量CT在病灶显影上非劣于标准剂量,但在转移瘤的敏感性上有所下降 比较低剂量和超低剂量CT与标准剂量CT在肝脏病灶显影质量上的差异 疑似或已知肝脏转移的患者 数字病理 肝脏转移 双源CT扫描,深度学习重建(DLR),模型迭代重建(MBIR) DLR,MBIR CT图像 133名参与者(男性58名,平均BMI 23.0±3.4 kg/m²)
12 2025-06-07
Learning to Explore Sample Relationships
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 本文提出了一种名为BatchFormerV1和BatchFormerV2的模块,用于增强深度神经网络在学习样本关系方面的能力 提出了BatchFormer模块,使深度神经网络能够以可学习的方式探索样本关系,并进一步扩展到像素/补丁级别的密集表示 探索实例级关系对密集预测的影响有限,且训练和测试阶段存在不一致性 解决深度学习在数据稀缺情况下的样本关系探索问题 深度神经网络中的样本关系 computer vision NA deep learning BatchFormerV1, BatchFormerV2 image 超过十个流行数据集
13 2025-06-07
Hard-Aware Instance Adaptive Self-Training for Unsupervised Cross-Domain Semantic Segmentation
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 提出了一种用于无监督跨域语义分割的硬感知实例自适应自训练框架 开发了一种新颖的伪标签生成策略,包含实例自适应选择器和硬感知伪标签增强,以及区域自适应正则化 未明确提及具体限制 解决标记训练数据与未标记测试数据之间的差异问题,提升无监督域适应(UDA)在语义分割任务中的性能 语义分割任务中的跨域数据 computer vision NA self-training, unsupervised domain adaptation (UDA) NA image GTA5 → Cityscapes, SYNTHIA → Cityscapes, Cityscapes → Oxford RobotCar 数据集
14 2025-06-07
Generating Inverse Feature Space for Class Imbalance in Point Cloud Semantic Segmentation
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 提出了一种名为InvSpaceNet的网络框架,通过生成逆特征空间来缓解点云语义分割中数据不平衡导致的认知偏差 设计了双分支训练架构,结合实例平衡采样数据的特征表示和逆采样数据的认知校正,生成逆特征空间以优化分割性能 未明确提及具体限制,但可能依赖于特定数据集和计算资源 解决点云语义分割中数据不平衡导致的认知偏差问题 点云数据 computer vision NA 深度学习 InvSpaceNet 点云 四个大型基准数据集(S3DIS, ScanNet v2, Toronto-3D, SemanticKITTI)
15 2025-06-07
GDRNPP: A Geometry-Guided and Fully Learning-Based Object Pose Estimator
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 介绍了一种完全基于学习的物体姿态估计器GDRNPP,通过几何引导的直接回归网络和姿态细化模块,实现了端到端的6D姿态估计 提出了一个完全基于学习的物体姿态估计器GDRNPP,无需依赖传统技术,实现了端到端的训练,并在精度和速度上超越了现有方法 NA 解决计算机视觉中刚性物体6D姿态估计的挑战,提高姿态估计的精度和速度 刚性物体的6D姿态 computer vision NA CNN GDRN, GDRNPP image NA
16 2025-06-07
ONNXPruner: ONNX-Based General Model Pruning Adapter
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
research paper 提出了一种名为ONNXPruner的通用模型剪枝适配器,用于简化ONNX格式模型在不同深度学习框架和硬件平台上的剪枝过程 ONNXPruner通过节点关联树自动适应各种模型架构,并引入树级评估方法,提升了剪枝性能 未提及具体剪枝算法在不同模型上的性能对比 推动模型剪枝的实际应用 ONNX格式的深度学习模型 machine learning NA 模型剪枝 ONNX格式模型 NA 多个模型和数据集
17 2025-06-07
Towards Unified Deep Image Deraining: A Survey and a New Benchmark
2025-Jul, IEEE transactions on pattern analysis and machine intelligence IF:20.8Q1
综述 本文全面回顾了现有的图像去雨方法,并提供了一个统一的评估设置来评估它们的性能 构建了一个新的高质量基准HQ-RAIN,并建立了一个在线平台以促进去雨技术的复现和追踪 未提及具体方法的局限性 统一评估图像去雨方法的性能并推动该领域的发展 图像去雨方法及其评估 计算机视觉 NA 深度学习 NA 图像 5,000对高分辨率合成图像
18 2025-06-07
Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study
2025-Jul, Computer methods and programs in biomedicine IF:4.9Q1
研究论文 本研究开发并评估了一种混合AI图像质量控制系统,用于分类裂隙灯图像,以提高诊断准确性和效率,特别是在远程医疗应用中 提出了一种新型网络HP-Net,结合了基于ResNet的分类分支和利用Hough圆变换及频域模糊检测的先验知识分支,增强了网络的表征能力和分类能力 研究主要针对裂隙灯图像,可能不适用于其他类型的医学图像 开发并评估一种混合AI图像质量控制系统,以提高裂隙灯图像的分类准确性和效率 裂隙灯图像 计算机视觉 眼科疾病 Hough圆变换和频域模糊检测 HP-Net(结合ResNet和先验知识分支) 图像 内部数据集2982张图像,外部数据集13,554张和9853张图像
19 2025-06-07
Impact of spectrum bias on deep learning-based stroke MRI analysis
2025-Jul, European journal of radiology IF:3.2Q1
研究论文 评估在卒中MRI分析中排除不确定急性缺血性病变(AIL)病例对深度学习工具诊断效能的影响 揭示了排除不确定病例会导致诊断比值比被高估四倍,并识别了与不确定AIL相关的独立因素 单中心回顾性研究,结果可能受限于样本选择偏差 评估卒中MRI分析中的频谱偏倚及其影响因素 疑似卒中成年患者的脑MRI数据 数字病理学 心血管疾病 脑MRI分析 深度学习工具(未明确具体模型) 医学影像 989名患者(374例确定AIL,63例不确定AIL,552例无AIL)
20 2025-06-07
Deep Learning Reveals Liver MRI Features Associated With PNPLA3 I148M in Steatotic Liver Disease
2025-Jul, Liver international : official journal of the International Association for the Study of the Liver IF:6.0Q1
研究论文 本研究利用深度学习分析肝脏MRI图像,识别与PNPLA3 I148M变异相关的脂肪肝病特征 首次应用深度学习模型于MRI图像,非侵入性检测PNPLA3 I148M纯合子,揭示了该变异与肝脏脂肪分布的关系 研究中排除了杂合子个体,可能限制了结果的广泛适用性 开发非侵入性方法识别PNPLA3 I148M变异携带者,以实现个性化医疗 来自UK Biobank的45,603名个体的MRI图像和遗传变异数据 数字病理学 脂肪肝病 MRI成像、水脂分离技术、基因分型 Vision Transformer、U-Net 图像、遗传数据 45,603名UK Biobank参与者,其中600张手动分割的肝脏图像用于训练U-Net模型
回到顶部