深度学习在生物医药领域的应用

本数据库通过收集和整理最新科研文献信息而得,供了解领域前沿进展之用。数据源自 PubMed Data ,每日自动更新(使用关键词“['deep learning']”过滤),已收录文献数量参见 统计表格。表格内容由 GPT 自动整理,可能存在错误或遗漏,请使用时务必注意核实!

如有建议或合作意向,欢迎联系 linlin.yan(AT)bioinfo.app 或 微信 yanlinlin82。本项目遵循 MIT 许可 发布,欢迎下载 源码 自行修改使用。如觉得不错,还请不吝 给我打赏,你的支持是我继续创新的重要动力!

Sample Image
添加微信请说明来意
Sample Image
微信赞赏

除通过在线浏览外,为方便用户离线查阅,本站也提供 付费下载(定价19.9元)。之所以考虑收费,是因为批量扫描这些文献并整理也是有一定成本的,还请理解并多多支持。本站数据会持续更新,而仅需一次付费,未来就可以随时重新下载到最新版本数据。

当前筛选条件: [分区不过滤] [IF不过滤] [发表日期不过滤] [清除筛选条件]
当前共找到 36836 篇文献,本页显示第 181 - 200 篇。
序号 推送日期 文章 类型 简述 创新点 不足 研究目的 研究对象 领域 病种 技术 模型 数据类型 样本量 算法框架 模型架构 性能指标 计算资源
181 2025-12-20
ENet-CAEM: a field strawberry disease identification model based on improved EfficientNetB0 and multiscale attention mechanism
2025, Frontiers in plant science IF:4.1Q1
研究论文 本研究提出了一种基于改进EfficientNetB0和多尺度注意力机制的草莓病害识别模型ENet-CAEM,用于田间草莓病害的实时诊断 引入了通道上下文模块、多尺度高效通道注意力模块、轻量级空洞空间金字塔池化以及混合池化策略,结合可学习DropPath和标签平滑正则化,以增强模型对不规则、多尺度病变特征的捕捉能力并抑制背景噪声 模型在自建数据集上准确率为85.84%,虽优于基线但仍有提升空间;且依赖有限数据训练,可能影响泛化能力 开发一种高效、鲁棒的田间草莓病害识别模型,以支持实时诊断和田间管理 草莓病害图像,特别是田间环境下具有不规则形状、多尺度病变和杂乱背景的图像 计算机视觉 草莓病害 深度学习图像识别 CNN 图像 自建数据集和公共草莓数据集,具体样本数量未明确说明 未明确说明,可能为TensorFlow或PyTorch 改进的EfficientNetB0 准确率 未明确说明
182 2025-12-20
ALNet: towards real-time and accurate maize row detection via anchor-line network
2025, Frontiers in plant science IF:4.1Q1
研究论文 本研究提出了一种名为ALNet的轻量级卷积神经网络,用于实现实时且准确的玉米行检测,以支持农业机械的视觉导航 引入了Anchor-Line机制将行检测重新定义为端到端回归任务,采用行对齐的核操作减少计算量,并设计了Attention-guided ROI Align模块与DAE-Former来增强特征交互,以及Row IoU损失函数以提高定位精度 NA 开发一种轻量级、高精度的玉米行检测方法,以支持农业机械的实时视觉导航 玉米行 计算机视觉 NA NA CNN 图像 NA NA ALNet, DAE-Former IoU, FPS, GFlops NA
183 2025-12-20
TSSC: a new deep learning model for accurate pea leaf disease identification
2025, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种名为TSSC的新型深度学习模型,用于准确识别豌豆叶片病害 设计了三邻域通道注意力机制以提升特征提取效果,引入了互补挤压与激励机制以增强关键特征提取能力,并嵌入了分割注意力模块以降低模型复杂度 NA 探索基于深度学习的智能识别方法,以解决多种豌豆叶片病害的自动识别问题 豌豆叶片病害 计算机视觉 植物病害 深度学习 CNN 图像 NA NA TSSC 分类准确率 NA
184 2025-12-20
Deep learning-guided discovery of selective JAK2-JH2 allosteric inhibitors: integration of MLP predictive modeling, BREED-based library design, and computational validation
2025, Frontiers in chemistry IF:3.8Q2
研究论文 本研究利用多层感知机(MLP)深度学习模型结合BREED片段杂交策略,发现并验证了选择性JAK2-JH2变构抑制剂 整合MLP预测建模、BREED库设计和计算验证,发现新型选择性JAK2-JH2变构抑制剂BRD1 研究结果需未来实验验证,未涉及体内或临床测试 发现选择性JAK2-JH2变构抑制剂用于血液和肿瘤疾病治疗 JAK2假激酶域(JH2)及其靶向化合物 机器学习 血液和肿瘤疾病 分子对接、分子动力学模拟、ADMET分析 MLP 化合物数据 1,200个JAK2靶向化合物用于训练,6,210个新分子用于筛选 NA 多层感知机 结合亲和力、构象稳定性、选择性 NA
185 2025-12-20
Accuracy of deep learning in diagnosis of apnea syndrome: a systematic review and meta-analysis
2025, Frontiers in neurology IF:2.7Q3
系统综述与荟萃分析 本文通过系统综述和荟萃分析评估了基于图像的深度学习模型在实时检测阻塞性睡眠呼吸暂停综合征中的诊断准确性 首次通过系统综述和荟萃分析综合评估基于心电图图像的深度学习模型在OSAS实时检测中的准确性,并针对不同验证集生成方法进行了亚组分析 建模基于从心电图片段中提取的研究,但提取片段的持续时间存在差异,且该方面未在研究中进行亚组分析,计划在后续研究中进一步探索和验证 阐明基于图像的深度学习方法在实时检测阻塞性睡眠呼吸暂停综合征中的准确性 基于心电图图像构建的深度学习模型 机器学习 阻塞性睡眠呼吸暂停综合征 深度学习 深度学习模型 图像(源自心电图) 来自39项原始研究的数据 NA NA 灵敏度, 特异度, 诊断比值比, 汇总受试者工作特征曲线下面积, 阳性似然比 NA
186 2025-12-20
Application of machine learning approaches to predict seizure-onset zones in patients with drug-resistant epilepsy: a systematic review
2025, Frontiers in neurology IF:2.7Q3
系统综述 本文系统综述了机器学习方法在预测耐药性癫痫患者发作起始区中的应用与性能 系统评估了机器学习,特别是深度学习和个性化模型在提高发作起始区预测准确性方面的潜力,并强调了考虑癫痫网络级变化的重要性 研究间存在数据采集方法、患者群体和报告标准的异质性,阻碍了直接比较,且临床实用性,特别是在复杂癫痫病例中,仍需进一步研究 评估机器学习方法在预测耐药性癫痫患者发作起始区中的应用与性能 耐药性癫痫患者 机器学习 癫痫 NA 支持向量机, 深度学习 NA 352名患者(平均年龄28岁,34%为女性) NA NA 准确率, 灵敏度, 特异性 NA
187 2025-12-20
Estimating weaning duration from incremental dentine δ15N and δ13C using a sequence-based LSTM neural network: A deep learning framework for bioarchaeological applications
2025, PloS one IF:2.9Q1
研究论文 本研究开发了一种基于序列的LSTM神经网络模型,利用牙齿增量δ15N和δ13C同位素数据来估计断奶持续时间 首次提出专门用于从序列同位素数据估计断奶持续时间的机器学习框架,利用δ15N和δ13C的序列模式,而非仅依赖δ15N 模型在特定考古遗址(塞萨洛尼基)的验证样本量较小(20个个体),需要更多样化的数据集进行进一步验证 开发一种可扩展且稳健的工具,用于重建生物考古学及相关研究中的断奶实践 过去人群的牙齿增量同位素数据 机器学习 NA 序列同位素分析(δ15N和δ13C) LSTM 序列数据 训练数据来自279个个体的三种牙齿类型(M1, dM1, dM2)的序列同位素数据;验证使用塞萨洛尼基遗址的20个个体 NA LSTM RMSE, MAE, R2 NA
188 2025-12-20
DeepKinome: quantitative prediction of kinase binding affinity by a compound using deep learning based regression model
2025, Frontiers in molecular biosciences IF:3.9Q2
研究论文 本文介绍了DeepKinome,一种基于20层卷积神经网络的深度学习回归模型,用于预测小分子化合物与激酶之间的定量结合亲和力 开发了DeepKinome这一深度学习回归模型,在预测激酶结合亲和力方面超越了现有DL和机器学习模型,并利用可解释AI分析揭示了与已知激酶磷酸化位点一致的关键氨基酸序列 模型训练数据仅基于L1000数据库中的234种激酶和163种化合物,可能限制了模型的泛化能力 预测小分子化合物与激酶之间的定量结合亲和力,以促进激酶抑制和化合物结合的理解 激酶和小分子化合物 机器学习 NA 深度学习 CNN 定量结合亲和力数据 234种激酶和163种化合物 NA 20层卷积神经网络 RMSE, R2, Pearson's correlation coefficient, acceptance interval ratio NA
189 2025-12-20
Comprehensive evaluation and clinical implications of kernel extreme learning machine long short term memory transformer framework
2025, American journal of translational research IF:1.7Q4
研究论文 本文开发并验证了一种混合深度学习模型,用于提高阿尔茨海默病的诊断和预测准确性 提出了一种结合KELM、LSTM和Transformer的三重架构联合模型,以捕捉非线性关联、时间动态和全局特征依赖 NA 开发并验证一种混合深度学习模型,以增强阿尔茨海默病的诊断和预测准确性 阿尔茨海默病患者,包括来自ADNI数据库的2,149名受试者和一个独立队列的1,012名受试者 机器学习 阿尔茨海默病 NA KELM, LSTM, Transformer 临床数据 2,149名受试者(训练和验证),1,012名受试者(外部测试) NA KELM-LSTM-Transformer 准确率, 召回率, AUC NA
190 2025-12-20
An ensemble heterogeneous transformer model for an effective diagnosis of multiple plant diseases
2025, Frontiers in plant science IF:4.1Q1
研究论文 本文提出了一种集成异构Transformer模型,用于准确诊断多种植物病害 结合了U-Net和Swin Transformer V2进行分割,使用CoAtNet及其变体进行分类,并引入基于Levy Flight Honey Badger Algorithm的元启发式融合策略动态加权分类器输出,提高了模型的鲁棒性和可解释性 未明确提及模型在真实田间复杂环境下的泛化能力或计算资源需求 开发一个高效、可靠的植物病害诊断系统,以支持可持续农业 植物叶片图像,特别是受病害影响的区域 计算机视觉 植物病害 图像分割与分类 Transformer, CNN 图像 54,305张图像,涵盖38个类别 NA U-Net, Swin Transformer V2, CoAtNet 准确率, 精确率, 召回率, 特异性, F1分数 NA
191 2025-12-20
Anatomically refined entorhinal cortex segmentation improves MRI-based early diagnosis of Alzheimer's disease
2025, Frontiers in aging neuroscience IF:4.1Q2
研究论文 本研究开发了一种结合专家引导解剖校正与深度学习的精细化内嗅皮层分割框架,以提高基于MRI的阿尔茨海默病早期诊断敏感性 通过手动移除前嗅周皮层扩展等解剖不一致区域,结合nnU-Net模型训练,实现了更精确的内嗅皮层分割,提升了诊断区分能力 未明确说明样本量的具体限制或模型在其他数据集上的潜在泛化挑战 提高基于MRI的阿尔茨海默病早期诊断的敏感性和准确性 阿尔茨海默病患者、轻度认知障碍患者和认知正常个体的内嗅皮层MRI数据 数字病理学 阿尔茨海默病 MRI CNN 图像 基于ADNI1 MRI数据,具体数量未明确说明 nnU-Net nnU-Net 组间区分度、分类分析性能、外部验证可靠性 NA
192 2025-12-20
A practical guide to the implementation of artificial intelligence in orthopaedic research-Part 2: A technical introduction
2024-Jul, Journal of experimental orthopaedics IF:2.0Q2
综述 本文为骨科研究人员提供了实施人工智能技术所需的技术基础入门指南 系统性地为骨科研究领域定制了人工智能技术分类、任务和架构的实用介绍,并特别关注了生成式AI和大语言模型的最新进展 作为入门指南,未涉及具体研究案例或深度技术细节,主要侧重于概念性介绍 为骨科研究人员提供参与人工智能驱动研究项目所需的基础技术知识 骨科研究人员 机器学习 骨科疾病 NA 神经网络, 深度学习架构 复杂医学数据, 医学文本 NA NA NA NA NA
193 2025-12-20
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
2024-Jun, Nature medicine IF:58.7Q1
研究论文 介绍了一种名为MRD-EDGE的机器学习引导的ctDNA检测平台,用于通过血浆全基因组测序超灵敏监测肿瘤负荷 开发了MRD-EDGE平台,利用深度学习和ctDNA特异性特征空间,将WGS中SNV的信噪比富集提高了约300倍,并将超灵敏CNV检测所需的非整倍性程度从1 Gb降低到200 Mb 未在摘要中明确说明 提高循环肿瘤DNA(ctDNA)检测的灵敏度,以用于微小残留病(MRD)评估和治疗反应监测 循环肿瘤DNA(ctDNA),涉及多种癌症类型(如肺癌、结直肠癌、黑色素瘤) 机器学习 肺癌,结直肠癌,黑色素瘤 血浆全基因组测序(WGS) 深度学习 基因组测序数据 NA NA NA 信噪比富集,检测灵敏度 NA
194 2025-12-20
Super-resolution dual-layer CBCT imaging with model-guided deep learning
2023-12-26, Physics in medicine and biology IF:3.3Q1
研究论文 本研究提出了一种基于双层面板探测器的超分辨率CBCT成像方法,通过深度学习模型从低分辨率投影中恢复高分辨率双能信息 提出了一种新的超分辨率CBCT成像方法,利用双层面板探测器获取过采样空间信息,并开发了基于成像模型的专用循环神经网络suRi-Net NA 研究一种新型的超分辨率CBCT成像方法,以提高图像空间分辨率 双层面板探测器获取的低能和高能投影数据 计算机视觉 NA 双层面板探测器成像 循环神经网络 图像 NA NA suRi-Net 空间分辨率提升百分比 NA
195 2025-12-20
ABUS tumor segmentation via decouple contrastive knowledge distillation
2023-12-26, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种用于自动乳腺超声(ABUS)肿瘤分割的新型知识蒸馏方法,通过解耦对比学习来减少计算需求并提升性能 提出了一种解耦对比知识蒸馏方法,将特征解耦为阳性(肿瘤)和阴性(非肿瘤)对,并设计了基于距离度量的排序损失函数来解决医学图像分割中的难负样本挖掘问题 方法在私有ABUS数据集和公共海马体数据集上进行了评估,但可能在其他医学图像分割任务中的泛化能力未充分验证 开发一种高效的知识蒸馏方法,用于ABUS肿瘤分割,以减少计算和参数需求,同时保持高分割精度 自动乳腺超声(ABUS)图像中的肿瘤区域 计算机视觉 乳腺癌 深度学习,知识蒸馏,对比学习 CNN 3D医学图像 私有ABUS数据集和公共海马体数据集,具体样本数量未明确说明 未明确指定,但可能基于PyTorch或TensorFlow等深度学习框架 3D U-Net, 3D HR-Net Dice相似系数(DSC) 未明确指定,但提及了参数减少(学生网络参数仅为教师网络的6.8%和12.1%)
196 2025-12-20
CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images
2023-12-26, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于模块化卷积神经网络和新型损失函数的全自动乳腺超声图像病灶分类系统 引入了基于类激活映射和定量超声特征的新型损失函数,结合动态通道输入增强网络和注意力引导的InceptionV3特征提取网络,无需显式分割即可实现可解释的病灶分类 未明确说明模型在不同超声设备间的泛化性能细节,且未讨论计算复杂度对实时诊断的潜在影响 开发全自动乳腺超声计算机辅助诊断系统以实现乳腺癌早期检测 乳腺超声图像中的良恶性病灶 计算机视觉 乳腺癌 超声成像 CNN 图像 1494张来自四个公共数据集、一个私有数据集及多中心合并数据集的乳腺超声图像 未明确说明 InceptionV3 准确率, 灵敏度, F1分数 未明确说明
197 2025-12-20
ETU-Net: edge enhancement-guided U-Net with transformer for skin lesion segmentation
2023-12-22, Physics in medicine and biology IF:3.3Q1
研究论文 提出了一种结合边缘增强、CNN和Transformer的新型多尺度U-Net模型ETU-Net,用于皮肤病变分割任务 引入了边缘检测算子到差分卷积中,设计了边缘增强卷积块和局部Transformer块以强调边缘特征,并提出了多尺度局部注意力块和全局Transformer块以解决边界模糊和补丁划分带来的不确定性 未明确提及 提高皮肤病变分割的准确性,特别是在处理复杂病变形状和模糊边界时 皮肤病变图像 计算机视觉 皮肤癌 NA CNN, Transformer 图像 三个公开皮肤数据集(PH2, ISIC-2017, ISIC-2018)以及无锡市第二人民医院提供的皮肤镜图像 NA U-Net, Transformer 分割性能指标(未具体说明,如准确率、Dice系数等) NA
198 2025-12-20
AI approach to biventricular function assessment in cine-MRI: an ultra-small training dataset and multivendor study
2023-12-13, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种基于超小训练数据集的3D深度学习模型,用于多厂商心脏电影磁共振成像中的双心室结构分割与功能评估 在超小数据集(仅150例)上结合Transformer与U-Net的3D深度学习模型,实现了多厂商、多序列心脏MRI的自动化分析 训练数据规模极小,且未在更广泛的外部数据集中验证模型的泛化能力 开发一种基于超小训练数据集的自动化方法,用于心脏MRI中双心室结构分割与功能评估 心脏电影磁共振成像图像 计算机视觉 心血管疾病 心脏电影磁共振成像 深度学习 3D医学图像 150例心脏数据集(90例训练,60例测试),来自三个不同MRI厂商,每例包含两个心脏周期相位和三个电影序列 NA Transformer, U-Net Dice系数, Hausdorff距离, Pearson相关系数, 组内相关系数, Bland-Altman分析 NA
199 2025-12-20
Deep learning for fast super-resolution ultrasound microvessel imaging
2023-12-12, Physics in medicine and biology IF:3.3Q1
研究论文 本文提出了一种名为自适应匹配网络(AM-Net)的新型深度学习架构及多映射(MMP)数据集生成方法,用于快速超分辨率超声微血管成像 引入了AM-Net架构和MMP数据集生成方法,显著提高了超声定位显微镜(ULM)的定位精度和计算效率,相比传统基于深度学习的ULM方法,在高微泡密度下实现了更高的定位准确性,并大幅减少了处理时间 深度学习性能高度依赖于训练数据集,而真实模拟这些数据集较为困难 克服传统超声定位显微镜(ULM)在数据处理时间长、成像精度受微泡密度影响以及传统基于深度学习的ULM方法不精确且计算复杂的问题 超声微血管成像,特别是通过定位微泡(MBs)进行微血管重建 计算机视觉 NA 超声定位显微镜(ULM),深度学习(DL) 深度学习模型 图像 NA NA 自适应匹配网络(AM-Net) 定位精度(横向/轴向方向),处理时间 NA
200 2025-12-20
Mitigating misalignment in MRI-to-CT synthesis for improved synthetic CT generation: an iterative refinement and knowledge distillation approach
2023-12-12, Physics in medicine and biology IF:3.3Q1
研究论文 提出一种新颖的迭代精炼和知识蒸馏方法,用于减轻MRI到CT合成中的错位问题,以改进合成CT生成 首次通过迭代精炼和知识蒸馏相结合的方式,系统性地解决MRI与CT之间的错位问题,减少GAN幻觉现象 仅针对头颈癌患者进行了验证,未在其他癌症类型或更大样本中测试 提高MRI到CT合成的准确性和对齐度,以支持仅基于MRI的放射治疗计划 头颈癌患者的MRI和CT图像数据 医学影像合成 头颈癌 深度学习,生成对抗网络 GAN MRI图像,CT图像 48名头颈癌患者 NA 条件GAN Dice系数,平均绝对误差,相对剂量差异 NA
回到顶部